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Abstract

We present a mathematical formulation to construct fractional factorial designs auto-

matically. In experiments whose designs have many factors, it is sometimes difficult to try

all possible combinations of the levels of the factors because of time and cost restriction.

Therefore, for each experiment, we often use a fractional factorial design i.e. a design

which consist of carefully chosen fraction of experimental runs of full factorial design. The

difficulty here is that the criterion of the choice varies according to the situation. In this

paper, we present a method to choose experimental runs from a full factorial desgin using

the group lasso. The method allows us to obtain the optimal design matrix with respect

to a given criterion by setting the tuning parameters adequately. We give some numerical

examples to show that we can obtain the orthogonal arrays as the solutions of the group

lasso problems.

1 Introduction

Design of experiments is widely used in a variety of fields such as agriculture, quality control, and

simulation. One of the purpose of design of experiments is to construct the optimal experimental

design with respect to a criterion under some constraints reflecting real problem. However, it is

sometimes hard to obtain the optimal designs theoretically. Recently, several computer-based

approaches have been developed for this problem. Especially, mixed integer programming is

used to construct balanced incomplete block designs (Yokoya and Yamada (2011)), orthogonal

designs (Vieira et al (2011a)) and nearly orthogonal nearly balanced mixed designs (Vieira

et al (2011b)). Additionally, Jones and Nachtsheim (2011) gives randomized algorithm to

obtain preferable designs for screening with factors having three levels. Interestingly, in Xiao

et al (2012), they theoretically give the optimal designs for the same problem of Jones and

Nachtsheim (2011), using conference matrices (Belevitch (1950)) with respect to the criterion

introduced in Jones and Nachtsheim (2011).

In this paper, we propose a new machine learning approach to obtain the optimal design

matrix with respect to a given criterion. As the first step to generate an optimal design matrix

automatically, we consider a full factorial design, i.e. a design which consists of all possible
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combinations of the levels of the factors. However, it is impractical to obtain the responses for

all experimental runs of a full factorial design because of time and cost restriction. In many

cases, it is necessary to reduce the number of experimental runs. Therefore, in the next step,

we generate a fractional factorial design, i.e. a design which consists of carefully chosen subset

of experimental runs of full factorial design. In Section 2.2, we explain that this procedure is

represented as the group lasso problem. The good point of our approach is that it is able to

treat a variety of criteria to choose experimental runs by changing the tuning parameters in the

group lasso. Furthermore, our method benefit from the development of the algorithm to solve

the group lasso problem.

The organization of this paper is as follows. In Section 2, we review the formulation of

the group lasso (Section 2.1) and apply it to the problem of constructing an optimal design

(Section 2.2). Section 3 is devoted to the numerical examples of our approach. In Section 4,

we summarize the features of our approach.

2 An application of the group lasso to design of experiments

2.1 The group lasso

The method of the group lasso (Yuan and Lin (2007)) which is a kind of generalization of the

lasso (Tibshirani (1996)) has become a popular method of variable selection for linear regression.

Let us consider the usual linear regression: we have continuous outputs y ∈ RN and a N ×D

design matrix X, where N is the sample size and D is the number of input variables. Let

I1, . . . , IG be disjoint subsets of {1, . . . , D}, i.e. Ig ∩ Ig′ = ∅ for g ̸= g′ ∈ {1, . . . , G}, |Ig| be the

number of elements in Ig, and denote the elements of Ig for g ∈ {1, . . . , G} by i1g, . . . , i|Ig|g.

The estimator of the group lasso β̂ ∈ RD is defined as

β̂ = argmin
β∈RD

(
||y −Xβ||22 +

G∑
g=1

λg||βIg ||2

)
, (1)

where λ1, . . . , λG ∈ R are tuning parameters, ||·||2 stands for the Euclidean norm (not squared),

and βIg = (βi1g , . . . , βi|Ig|g ) for g ∈ {1, . . . , G}. If I1, . . . , IG are all singletons, then the group

lasso of (1) coincides with the lasso. The group lasso has the property that it does variable

selection at the group level, i.e., an entire group of input variables may drop out of the model.

Therefore, if we choose the tuning parameters adequately, then we obtain the sparse solution
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in (1), i.e. the solution that contains many zero components. Note that the choice of the values

of λg for g ∈ {1, . . . , G} is important: we obtain a sparse solution (βIg = 0) for a sufficiently

large λg, and a non-zero solution for a sufficiently small λg. The group lasso problem of (1) can

be formulated as a second order cone programming and solved by the interior point methods.

Furthermore, there are some specialized algorithms which solve the group lasso problem faster

than the interior point methods.

2.2 Design of experiments

Let F be a finite subset of ZF
≥0, Assume that there are F factors a1, . . . , aF and the relation

between the response variable R and the factors is formulated as

R =
∑
f∈F

γfa
f + ϵ, (2)

where af =
∏F

i=1 a
fi
i for f = (f1, . . . , fF ) ∈ F , γf ∈ R is an unknown coefficient of af , and

ϵ is the error with mean zero and variance σ2. Let us denote the set of parameters which we

want to estimate by γ′. Then, γ′ is a subset of {γf ∈ R | f ∈ F}. For simplicity, in this

paper, we only consider the case where each factor has finite fixed levels and assume that, for

each f ∈ {1, . . . , F}, the f -th factor af has lf levels αf1, . . . , αflf . Let A be the set of all

possible combinations of the levels of the factors, i.e. the set which consists of all experimental

runs of a full factorial design, and each of the elements is represented as a column vector.

Then A has
∏F

f=1 lf elements and A can be represented as A = {(α1i1 , . . . , αFiF )
T | if ∈

{1, . . . , lf}, f ∈ {1, . . . , F}} where T stands for transpose. Let G be the number of elements

of A and {a1, . . . ,aG} be the elements of A, i.e. the experimental runs of A, in an arbitrary

order. The design matrix C is defined such that the g-th column is ag, i.e., C = [a1 . . . aG].

Example 1. Let us consider the case where there are F = 3 factors a1, a2, a3 and each factor

has two levels 1 or −1. That means that values of α11, α12, . . . , α32 can be defined as αf1 = 1

and αf2 = −1 for each f ∈ {1, 2, 3}. In this case, there are G = 23 = 8 experimental runs in

the full factorial design and A is represented as

A = {(α1i1 , α2i2 , α3i3)
T | i1, i2, i3 ∈ {1, 2}}

= {(1, 1, 1)T , (1, 1,−1)T , . . . , (−1,−1,−1)T }
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Furthermore, the column vectors a1,a2, . . . ,a8 can be defined as a1 = (1, 1, 1)T , a2 = (1, 1,−1)T ,

. . . ,a8 = (−1,−1,−1)T . Then the design matrix C which consists of a1,a2, . . . ,a8 is defined

as follows:

C =




1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1


 . (3)

Let |F| be the number of elements in F and F = {f0, . . . ,f|F|−1} sorting the elements of

F in an arbitrary order. For each ag for g ∈ {1, . . . , G}, let ãg = (af0
g , . . . ,a

f|F|−1
g )T . Then the

model matrix M of the experimental runs of A is defined such that the g-th column is ãg, i.e.,

M = [ã1 . . . ãG].

Example 2. As in Example 1, we consider the case where there are F = 3 factors and each

factor has two levels 1 or −1. Furthermore, we assume that the relation between the response

variable and the factors is formulated as

R = γ000 + γ100a1 + γ010a2 + γ001a3 + ϵ. (4)

In this case, F = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and ã1, ã2, . . . , ãG are obtained as follows:

ã1 = (101010, 111010, 101110, 101011)T = (1, 1, 1, 1)T

ã2 = (1010(−1)0, 1110(−1)0, 1011(−1)0, 1010(−1)1)T = (1, 1, 1,−1)T

...

ã8 = ((−1)0(−1)0(−1)0, (−1)1(−1)0(−1)0, (−1)0(−1)1(−1)0, (−1)0(−1)0(−1)1)T

= (1,−1,−1,−1)T

Then the model matrix M of the experimental runs of A is defined as follows:

M =




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1



. (5)

Note that, for simplicity, we may also write γ0, γ1, γ2 and γ3 instead of γ000, γ100, γ010 and

γ001.
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For j ∈ {0, . . . , |F| − 1}, let ej = efj
be the |F|-dimensional column vector such that ej

has an entry 1 at the (j + 1)-th row and 0 otherwise. Furthermore, for j ∈ {0, . . . , |F| − 1}, let

γj = γfj as in Example 2, and γ = (γ0, . . . , γ|F|−1)
T . For g ∈ {1, . . . , G}, let Rg and ϵg be the

response variable and the error respectively when the factors af0
g , . . . ,a

f|F|−1
g are given. Let

R = (R1, . . . , RG)
T and ϵ = (ϵ1, . . . , ϵG)

T . We use the following proposition to formulate the

problem of constructing an optimal design matrix as a problem of mathematical programming.

Proposition 3. For a fixed j ∈ {0, . . . , |F|−1}, if there exists βj◦ = (βj1, . . . , βjG) ∈ RG such

that βj1ã1 + · · ·+ βjGãG = ej, then γ̂j = βj1R1 + · · ·+ βjGRG is an unbiased estimator of γj.

The variance of γ̂j is Var[γ̂j ] = σ2||βj◦||22.

Proof: Note that R = MTγ + ϵ and Mβj◦ = ej from the assumption. Then we obtain

E[γ̂j ] = E[βj1R1 + · · ·+ βjGRG] = E[RTβj◦] = E[(MTγ + ϵ)Tβj◦]

= E[γTMβj◦] + E[ϵTβj◦] = E[γTej ] = γj .

The variance is

Var[γ̂j ] = β2
j1Var[R1] + · · ·+ β2

jGVar[RG] = σ2||βj◦||22.

In the following, we consider a method to construct a design matrix and estimators of γ′ in

the design matrix based on some criteria. As one of our design criteria, we use the A-optimality

in which the sum (or the “A”verage) of the variances of the estimators is minimized. In

general, the more the experimental runs, the smaller the variances of the estimates. Therefore,

the full factorial design is fine if we consider only the A-optimality as a criterion. However, it is

sometimes difficult to try all possible combinations of the levels of the factors because of time

and cost restriction. Therefore, as another criterion, we consider the number of experimental

runs. We consider that a design which has fewer experimental runs is preferable. Thus, we need

to consider two tasks at the same time: i) to minimize the variances of the estimatotrs, and ii)

to try to reduce the number of experimental runs. There is a trade-off between these two tasks.

Hence, it is prefarable to formulate the tasks as a mathematical programming problem which

enables us to control the balance between them by changing the values of tuning parameters.

Let us denote the set of the indices of the parameters which we want to estimate by J ⊆

{1, . . . , |F|}. Then, γ′ is represented as {γj | j ∈ J}. For each γj ∈ γ′, we consider a linear
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estimator γ̂j = βj1R1 + · · · + βjGRG = RTβj◦. From Proposition 3, the sum of the variances

of the estimators for {γj | j ∈ J} is σ2
∑

j∈J ||βj◦||22. Therefore, based on the A-optimality

criterion, we need to minimize the sum
∑

j∈J ||βj◦||22 under the condition of the unbiasedness:

Mβj◦ = ej for j ∈ J . For each g ∈ {1, . . . , G}, let β◦g be a column vector whose entries

are {βjg | j ∈ J}. Next, to try to reduce the number of experimental runs, we consider

the group lasso penalty for each of β◦1, . . . ,β◦G. If β◦g = 0 for a g ∈ {1, . . . , G}, then the

response Rg at the g-th experimental run is not used for the estimators of γ′ and hence we

do not need to conduct the g-th experimental run. Thus, we use the method of the group

lasso for variable selection in regression models to choose the subset of the experimental runs

of full factorial design. Therefore, the following penalized least square gives the solution which

minimizes the sum of the variances of the estimators under the condition of the unbiasedness

with consideration of the number of experimental runs.

min
{βj◦|j∈J}


∑

j∈J

||βj◦||22 +
G∑

g=1

λg||β◦g||2




s.t. Mβj◦ = ej , (j ∈ J).

(6)

Here, λ1, . . . , λG ∈ R are tuning parameters. The problem of (6) is a second order cone

programming and can be solved by the interior point methods.

Note that the formulation of (6) contains linear constraints and some specialized algorithms

which solves the group lasso problem may not applicable. We can also consider the Lagrangian

relaxation problem of (6) as follows:

min
{βj◦|j∈J}

∑
j∈J

(||βj◦||22 + κj ||Mβj◦ − ej ||22) +
G∑

g=1

λg||β◦g|| (7)

where, κj , (j ∈ J) is a tuning parameter. The formulation of (7) is the same as the group lasso

and thus the specialized algorithms for the group lasso is applicable. In particular, the solution

of the problem of (7) does not accurately satisfy the constraints of the unbiasedness when κj ’s

are not so large. This means that, from the problem of (7), we can obtain the solution when

we allow confounding among the factors. Therefore, the formulation of (7) works even when

the number of the elements of J is larger than G or the number of non-zero β◦g’s.

As the following example shows, in the formulation of (6) we have to determine the values

of λ1, . . . , λG ∈ R carefully to obtain the sparse solution.
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Example 4. As in Examples 1 and 2, we assume that there are F = 3 factors and each factor

has two levels 1 or −1. Furthermore, we assume that the design matrix C is given by (3). We

consider the main effect model: R = γ0+
∑3

j=1 γjaj+ϵ. Then the model matrix is given by (5).

Suppose that we want to estimate γ1, γ2 and γ3, i.e. J = {1, 2, 3}. To this model, traditional

Table 1: L4 orthogonal array

Run 1 4 6 7

a1 1 1 -1 -1

a2 1 -1 1 -1

a3 1 -1 -1 1

Table 2: The orthogonal array (−1)× L4

Run 2 3 5 8

a1 -1 -1 1 1

a2 -1 1 -1 1

a3 -1 1 1 -1

design of experiments evaluates that L4 orthogonal array in Table 1 is fine. Note that Table 1 is

transposed against the traditional notation of L4 orthogonal array, i.e., each column corresponds

to a run of the experiment and the rows indicate the levels of a1, a2 and a3. The following is

one of feasible solutions of (6):

β1◦ =
1

4
(1, 0, 0, 1, 0,−1,−1, 0)T ,

β2◦ =
1

4
(1, 0, 0,−1, 0, 1,−1, 0)T , (8)

β3◦ =
1

4
(1, 0, 0,−1, 0,−1, 1, 0)T .

Note that the 2nd, 3rd, 5th and 8th elements of β1◦,β2◦ and β3◦ are all zero in (8). This means

that only the 1st, 4th, 6th and 7th experimental run in (3) are used for the estimation of γ1,

γ2 and γ3, and hence the solution (8) gives L4 orthognal array given in Table 1. If the values

of tuning parameters λ1, . . . , λG ∈ R are properly given, then we obtain the solution (8) as the

optimal solution of (6). However, as shown below, we need to pay a lot of attention to the

values of tuning parameters λ1, . . . , λG ∈ R. If we set λ1 = · · · = λ8 = λ for any non-negative

real number λ, then we can not obtain the solution (8), i.e. L4 orthogonal array, as the optimal

solution of (6). To see this, let us consider the following feasible solution:

β1◦ =
1

4
(0, 1, 1, 0,−1, 0, 0,−1)T ,

β2◦ =
1

4
(0, 1,−1, 0, 1, 0, 0,−1)T , (9)

β3◦ =
1

4
(0,−1, 1, 0, 1, 0, 0,−1)T .
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This solution (9) corresponds to the orthogonal array in Table 2. It can be easily seen that the

value of the objective function of (6) for (8) and that for (9) are the same. Furthermore, note

that the problem of (6) is strictly convex and thus the minimum is attained at a unique point.

Therefore, the feasible solution (8) is not the optimal solution of (6), if we set λ1 = · · · = λ8 =

λ.

The above example implies that the presence of the symmetries in the formulation of (6)

prevents the sparseness of the solution. In Example 4, if we set λ1 = · · · = λ8 = λ, then there

exists a symmetry with respect to the transformation β◦1 ↔ −β◦8, β◦2 ↔ −β◦7, β◦3 ↔ −β◦6,

β◦4 ↔ −β◦5. Therefore, for example, if there exists a feasible solution satisfying β◦1 = 0,

then there exists a feasible solution satisfying β◦8 = 0 having the same value of the objective

function. Because the minimum of the objective function is attained at a unique point, a

feasible solution satisfying β◦1 = 0 and β◦8 ̸= 0 is not the optimal solution. A feasible solution

satisfying β◦1 = 0 and β◦8 = 0 might be an optimal solution, but we can not reduce the number

of experimental runs any more due to the linear constraints.

3 Numerical examples

In this section, we mainly consider the case where each factor has two levels {1,−1}. For our

experiment, a laptop with an 1.20 GHz CPU and 8GB RAM was used. You can find the file

of the program written in Python used in the following examples at https://github.com/

tanaken-basis/explasso.

As Example 4 shows, we need to carefully determine the values of λ1, . . . , λG. Therefore, it is

important to investigate how the optimal solution depends on the values of tuning parameters.

In the following Examples 5, 6 and 7, the specified values are used as the values of tuning

parameters. In Examples 8 and 9, we use uniform random numbers between 0 and 100 as the

values of tuning parameters.

Example 5. As in Examples 1 and 2, we assume that there are F = 3 factors and each factor

has two levels 1 or −1, and the model and model matrix are given by (4) and (5) respectively.

Suppose that we want to estimate γ1, γ2 and γ3. Furthermore, we use the following values as

the values of the tuning parameters: λ1 = λ4 = λ6 = λ7 = 1, λ2 = λ3 = λ5 = λ8 = 10. Then,
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by solving (6), we obtain the optimal solution β1◦,β2◦,β3◦ as follows:

β1◦ =
1

4
(1, 0, 0, 1, 0,−1,−1, 0)T ,

β2◦ =
1

4
(1, 0, 0,−1, 0, 1,−1, 0)T , (10)

β3◦ =
1

4
(1, 0, 0,−1, 0,−1, 1, 0)T .

The computation time was 0.039 seconds. Table 3 is the optimal design matrix which consists

of the 1st, 4th, 6th and 7th experimental run in (3), i.e. 2nd, 3rd, 5th and 8th elements of

β1◦,β2◦ and β3◦ in (10) are all zero. Note that Table 3 is identical with the L4 orthogonal

array in Table 1.

Table 3: The optimal design matrix in Example 5

Run 1 4 6 7

a1 1 1 -1 -1

a2 1 -1 1 -1

a3 1 -1 -1 1

In the above Example 5, the results are almost obvious because we choose the values of

the tuning parameters such that the L4 orthognal array is obtained as the optimal design and

only the experimental runs whose values of tuning parameters are 1 are chosen in the optimal

design matrix. In the next example, we see an example where an experimental run with a large

tuning parameter value is sometimes chosen. That means that the optimal design matrix is not

determined only by the values of tuning parameters.

Example 6. Assume that there are F = 4 factors a1, a2, a3, a4 and each factor has two levels

−1 or 1. Furthermore, we assume that the relation between the response variable and the factors

is formulated as

R = γ0 + γ1a1 + γ2a2 + γ3a3 + γ4a4 + γ5a1a2 + γ6a1a3 + γ7a1a4 + ϵ.

(11)

In this case, there are G = 24 = 16 experimental runs in the full factorial design and the model
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matrix M of the full factorial design is given as follows:

const.

a1

a2

a3

a4

a1a2

a1a3

a1a4




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1




. (12)

Suppose that we want to estimate γ1, . . . , γ7. Furthermore, we use the following values as the

values of the tuning parameters:

(λ1, . . . , λ16) = (1, 40, 45, 10, 45, 15, 5, 40, 45, 10, 5, 30, 5, 45, 40, 50). (13)

Then, by solving (6), we obtain the optimal solution β1◦, . . . ,β7◦ as follows:

β1◦ =
1

8
(1, 0, 0, 1, 0, 1, 1, 0, 0,−1,−1, 0,−1, 0, 0,−1)T ,

β2◦ =
1

8
(1, 0, 0, 1, 0,−1,−1, 0, 0, 1, 1, 0,−1, 0, 0,−1)T ,

β3◦ =
1

8
(1, 0, 0,−1, 0, 1,−1, 0, 0, 1,−1, 0, 1, 0, 0,−1)T ,

β4◦ =
1

8
(1, 0, 0,−1, 0,−1, 1, 0, 0,−1, 1, 0, 1, 0, 0,−1)T , (14)

β5◦ =
1

8
(1, 0, 0, 1, 0,−1,−1, 0, 0,−1,−1, 0, 1, 0, 0, 1)T ,

β6◦ =
1

8
(1, 0, 0,−1, 0, 1,−1, 0, 0,−1, 1, 0,−1, 0, 0, 1)T ,

β7◦ =
1

8
(1, 0, 0,−1, 0,−1, 1, 0, 0, 1,−1, 0,−1, 0, 0, 1)T .

The computation time was 0.196 seconds. Table 4 shows the optimal design matrix given by the

solution (14). Note that Table 4 is equivalent to the L8 orthogonal array. Furthermore, note

that the 16th experimental run with the greatest tuning parameter λ16 = 50 is chosen in this

setting.

In the next example, we consider the case where a non-orthognal array is generated.

Example 7. Assume that there are F = 4 factors a1, a2, a3, a4 and each factor has two levels 1

or −1. Furthermore, we assume that the relation between the response variable and the factors
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Table 4: The optimal design matrix in Example 6

Run 1 4 6 7 10 11 13 16

a1 1 1 1 1 -1 -1 -1 -1

a2 1 1 -1 -1 1 1 -1 -1

a3 1 -1 1 -1 1 -1 1 -1

a4 1 -1 -1 1 1 -1 -1 1

a1a2 1 1 -1 -1 -1 -1 1 1

a1a3 1 -1 1 -1 -1 1 -1 1

a1a4 1 -1 -1 1 -1 1 1 -1

is formulated as

R = γ0 + γ1a1 + γ2a2 + γ3a3 + γ4a4 + γ5a1a2 + γ6a1a3 + γ7a1a4

+γ8a2a3 + ϵ.

In this case, there are G = 24 = 16 experimental runs in the full factorial design and the model

matrix M of the full factorial design is given as follows:

const.

a1

a2

a3

a4

a1a2

a1a3

a1a4

a2a3




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1




.

Suppose that we want to estimate γ1, . . . , γ8. Then, by solving (6) with the tuning parameters
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given in (13), we obtain the optimal solution β1◦, . . . ,β8◦ as follows:

β1◦ =
1

8
(1, 0, 0, 1, 0, 1, 1, 0, 0,−1,−0.115,−0.885,−1, 0,−0.885,−0.115)T ,

β2◦ =
1

8
(1, 0, 0, 1, 0,−1,−1, 0, 0, 1, 1.868,−0.868,−1, 0,−0.868,−0.132)T ,

β3◦ =
1

8
(1, 0, 0,−1, 0, 1,−1, 0, 0, 1,−0.115,−0.885, 1, 0,−0.885,−0.115)T ,

β4◦ =
1

8
(1, 0, 0,−1, 0,−1, 1, 0, 0,−1, 1.868,−0.868, 1, 0,−0.868,−0.132)T , (15)

β5◦ =
1

8
(1, 0, 0, 1, 0,−1,−1, 0, 0,−1,−1.868, 0.868, 1, 0, 0.868, 0.132)T ,

β6◦ =
1

8
(1, 0, 0,−1, 0, 1,−1, 0, 0,−1, 0.115, 0.885,−1, 0, 0.885, 0.115)T ,

β7◦ =
1

8
(1, 0, 0,−1, 0,−1, 1, 0, 0,−1,−1.932, 2.932, 1, 0,−1.068, 0.068)T ,

β8◦ =
1

8
(0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0.064,−2.064,−2, 0, 1.936, 0.064)T ,

The computation time was 0.211 seconds. Table 5 shows the optimal design matrix given by

the solution (15). Note that the first 6 columns of Table 5 are similar to Table 4.

Table 5: The optimal design matrix in Example 7

Run 1 4 6 7 10 11 12 13 15 16

a1 1 1 1 1 -1 -1 -1 -1 -1 -1

a2 1 1 -1 -1 1 1 1 -1 -1 -1

a3 1 -1 1 -1 1 -1 -1 1 -1 -1

a4 1 -1 -1 1 -1 1 -1 1 1 -1

a1a2 1 1 -1 -1 -1 -1 -1 1 1 1

a1a3 1 -1 1 -1 -1 1 1 -1 1 1

a1a4 1 -1 -1 1 1 -1 1 -1 -1 1

a2a3 1 -1 -1 1 1 -1 -1 -1 1 1

In the above Examples 5, 6 and 7, the specified values are used as the values of tuning

parameters. In the next example, we consider what happens if the values of tuning parameters

are randomly chosen.

Example 8. As in Example 6, we assume that there are F = 4 factors and each factor has two

levels −1 or 1, and the model and model matrix are given by (11) and (12) respectively. In this

case, there are G = 24 = 16 experimental runs in the full factorial design and the model matrix
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Table 6: Frequency table of number of the experimental runs

# of experimental runs Frequency

8 51

9 186

10 299

11 257

12 138

13 52

14 16

15 1

16 0

M of the full factorial design is given by (12). Suppose that we want to estimate γ1, . . . , γ7. In

this example, we investigate the number of the experimental runs of the optimal design given by

solving (6) with randomy chosen tuning parameters. We use uniform random numbers between

0 and 100 as the values of the tuning parameters. We repeated the following computations 1000

times and obtained the results in Table 6.

Step 1. Generate uniform random numbers between 0 and 100 as the values of tuning param-

eters λ1, . . . , λ16.

Step 2. Solve (6) with tuning parameters given in Step 1.

Step 3. Count the number of the experimental runs of the optimal design given in Step 2.

As shown in this results, though we chose the values of tuning parameters randomly, the number

of the experimental runs of the optimal design was less than or equal to 10 in more than half

of the cases.

Finally, we give an example which shows how the computation time increases as the number

of factors increases.
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Table 7: The number of factors and computation time in seconds

# of factors time [sec]

1 0.023

2 0.017

3 0.051

4 0.117

5 0.335

6 1.533

7 8.440

8 60.096

9 560.237

Example 9. In this example, we observe the computation time to solve the problem of (6),

changing the number of factors F from 1 to 9. We assume that each factor has two levels 1

or −1 and the relation between the response variable and the factors is formulated as the main

effect model (with no interaction terms) i.e.

R = γ0 + γ1a1 + γ2a2 + · · ·+ γFaF + ϵ.

Suppose that we want to estimate γ1, . . . , γF . Furthermore, we use uniform random numbers

between 0 and 100 as the values of the tuning parameters. Table 7 implies the computation time

increases exponentially as the number of factors increases.

4 Concluding remarks

We apply the group lasso to construct fractional factorial designs. Though, in the examples

treated in this paper, we mainly treat the case where each factor has two levels and the full fac-

torial design A which consists of all combinations of the levels of the factors without repetition,

our approach, described in Section 2.2, has the following features.

• Each factor can have two or more levels.

• By duplicating the columns of the design matrix, we can treat the case of repeated mea-

surements.
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• Assume that we have already observed the responses at the experimental runs of ag′
1
, . . . ,ag′

Q

where g′1, . . . , g
′
Q ∈ {1, . . . , G}. Then, by setting λg′

1
= · · · = λg′

Q
= 0, we can choose ad-

ditional experimental runs given Rg′
1
, . . . , Rg′

Q
.

Furthermore, we do not need to consider all combinations of the levels of the factors in A. If

the number of the levels or the factors increases, then the number of the combinations increases

explosively. This means that the number of the variables in the formulation of (6) increases

explosively, and hence it becomes difficult to solve the problem. Therefore, if the number of the

levels or the factors is large, then it is needed to reduce the number of the experimental runs

of A in advance to bound the number of variables in (6). For future work, we will investigate

how to choose the experimental runs in advance. We will also investigate how to determine the

values of λ1, . . . , λG ∈ R.
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