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Summary

Ultrahigh energy aspects of perturbative string scattering are surveyed after our precedent

compendia on the thermal Virasoro amplitude as well as the thermal Veneziano amplitude

in proper reference to the possible violation of unitarity bounds. The configuration of highly-

excited string states is then touched upon from the viewpoint of string cosmology in association

with the possible macroscopic nonlocality as well as the newfashioned percolation scenario.

Elaboration of thermal string theories based upon the thermofield dynamics (TFD) [1] de-

serves more than passing consideration in the thermodynamical investigation of the thermal

string ensemble in general. In a precedent compendium of ours [2], the thermal stability of

planar duality was recapitulated after our previous publications on the TFD algorithm of the

thermal Lovelace-Veneziano formula. In a sequent compendium of ours [3], the thermal stabil-

ity of non-planar duality was epitomized after our previous publication on the TFD paradigm

of the thermal Virasoro formula. The principal conclusion is summarized as follows: The

thermal stability of the non-planar, four-tachyon tree amplitude is substantiated in the sense

of the Virasoro formula [4,5] with the aid of the topological sewing machinery just through

the thermal stability of the factorized, planar, four-tachyon tree amplitudes in the sense of

the Veneziano formulae [6]. In another compendium of ours [7], the microcanonical ensemble

paradigm of black hole thermodynamics was encapsulated after our previous publications on

primordial black holes of various geometries. The principal observation is as follows: The most

probable microcanonical distribution of black holes is self-consistently described at high ener-

gies in asymptotically flat space through the so-called single-massive-mode dominance scenario

which is reminiscent of the newfashioned percolation scenario of the black hole ensemble. In the

present communication, ultrahigh energy aspects of perturbative string scattering are surveyed

on the basis of the thermal Virasoro formula [3] as well as the thermal Veneziano formula [2]

in proper respect of the possible violation of unitarity bounds such as the Froissart bound [8]

and the Cerulus-Martin bound [9]. The configuration of highly-excited string states is then
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then led to the Virasoro amplitude [4,5]:
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4
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4
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Γ reads the gamma function, and g is the coupling constant of the closed bosonic string. In

addition, the tachyon trajectory function αcl(ζ) [αop(ζ)] of closed [open] bosonic string satisfies

the constraint

αcl(s) + αcl(t) + αcl(u) = −2 [αop(s) + αop(t) + αop(u) = −1]. (3)

Our task is then reduced to building up the non-planar, four-tachyon tree amplitude V β
cl (s, t, u)

of closed bosonic strings at nonzero temperature in the dispersion theoretic TFD approach.

Since there is no preferred channel for thermal fluctuations, the newfashioned SW transform of

the non-planar thermal amplitude V β
cl (s, t, u) turns out to be

V β
cl (s, t, u) =

g2

3
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i
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+ {s → t; t → u; u → s} + {s → u; t → s; u → t}, (4)

where β = 1/kT . The thermal, partial-fraction amplitude V̄ β(lζ , αcl(ζ)/2) is expressed in the

TFD fashion as [16]

V̄ β(lζ ,
1

2
αcl(ζ)) = −

{
1

lζ − 1
2
αcl(ζ)

+
2πi

eβωζ/2 − 1
δ(lζ − 1

2
αcl(ζ))

}
, (5)

where ωζ =
√|ζ|; ζ = s, t, u. Insertion of eq. (5) into eq. (4) yields the thermal Virasoro

sketched after ref. [3] and ref. [7] from the standpoint of string cosmology [10-15] with regard

to the possible macroscopic nonlocality due to string extendedness and/or strong gravitational

effects. The possible association with the newfashioned percolation scenario of the black hole

ensemble is also touched upon.

Let us start with illustrating after ref. [3] the non-planar, four-tachyon tree amplitude of

closed bosonic thermal strings in proper reference to the newfashioned Sommerfeld-Watson

(SW) transform with the aid of the TFD thermal propagator [16] in the standard dispersion

theoretic approach based upon the TFD calculus. The non-planar, four-tachyon tree amplitude

Vcl(s, t, u) of closed bosonic strings is obtained at zero temperature as a simple and natural

consequence of sewing up planar, four-tachyon tree amplitudes of open bosonic strings. We are
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amplitude:

V β
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in the tree approximation. Thus the topological sewing machinery à la non-planar fashion yields

no disturbance of the thermal stability of the factorized, planar, four-tachyon tree amplitudes

of open bosonic thermal strings. We are then led to conclude that the thermal stability of

non-planar duality is substantialized at least at the tree level in the sense of the Virasoro

formula in full consonance with the thermal stability of planar duality in the sense of the

Veneziano formula. At sufficiently low temperatures, indeed, the thermal Virasoro amplitude

(6) eventuates in the zero-temperature Virasoro amplitude (1). At very high temperatures, on

the other hand, we obtain asymptotically

V β
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; β ∼ 0, (7)

where the effective coupling constant geff of the closed bosonic thermal string is expressed as

g2
eff = g2(kT )2 · 4

3

ωs + ωt + ωu

ωsωtωu

(8)

at nonzero, finite values of s, t and u. The asymptotic expression (8) is reminiscent of the

Atick-Witten formula [17], g2
eff ∼ g2(kT )2, for the effective theory of closed bosonic strings at

extremely high temperatures.

Let us now touch upon after our previous publications [18] the planar, four-tachyon tree

amplitude V β
op(s, t, u) of open bosonic strings at nonzero temperature. The zero-temperature,

planar, four-tachyon tree amplitude Vop(s, t, u) is written in the form

Vop(s, t, u) = ḡ2 {B(−αop(s),−αop(t)) + B(−αop(t),−αop(u)) + B(−αop(u),−αop(s))} , (9)

where B reads the Euler beta function, and ḡ is the coupling constant of the open bosonic string.

Here, it is noted that ḡ2 ∼ g as a simple and natural consequence of the topological sewing

machinery. Accordingly, the planar, four-tachyon thermal amplitude V β
op(s, t, u) is described à

la ref. [2] as

V β
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in the tree approximation, where use has been made of the newfashioned SW transform:

V β
op(s, t, u) =

ḡ2

2

i

2π

∫ L+i∞
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{
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β(ls, αop(t))
Γ(−ls)Γ(−αop(t))

Γ(−ls − αop(t))
+ (s ↔ t)

}

+ {s → t; t → u; u → s} + {s → u; t → s; u → t} (11)

with the aid of the TFD thermal propagator [16]:

V̄ β(lζ , αop(ζ)) = −
{

1

lζ − αop(ζ)
+

2πi

eβωζ − 1
δ(lζ − αop(ζ))

}
. (12)

Thus the thermal stability of planar duality is guaranteed in the original sense of the Veneziano

formula. At the low temperature limit, indeed, the thermal Veneziano amplitude (10) is ev-

idently reduced to the zero-temperature Veneziano amplitude (9). At the high temperature

limit, on the other hand, we obtain asymptotically

V β
op(s, t, u) �ḡ2

st;eff B(−1 − s

2
,−1 − t

2
) + ḡ2

tu;eff B(−1 − t

2
,−1 − u

2
)

+ ḡ2
us;eff B(−1 − u

2
,−1 − s

2
) ; β ∼ 0, (13)

where

ḡ2
ζ1ζ2;eff = ḡ2kT · 1

2

ωζ1 + ωζ2

ωζ1ωζ2

; ζ1, ζ2 = s, t, u (14)

at nonzero, finite values of s, t and u. The asymptotic relation (14) is reminiscent of the Atick-

Witten formula [17], ḡ2
eff ∼ ḡ2kT , for the effective theory of open bosonic strings at very high

temperatures.

Let us turn our attention to high energy aspects of four-tachyon tree amplitudes V β
cl (s, t, u)

and V β
op(s, t, u) of thermal bosonic strings. The high energy, fixed-angle behaviour of the thermal

Virasoro amplitude (6) is reduced to

V β
cl (s, t, u) ∼ Vcl(s, t, u)

∼ 8ig2e−8(stu)−3 exp

[
−1

4
(s ln s + t ln t + u ln u)

]
(15)

at any finite temperature, where use has been made of the Stirling formula. Irrespective of the

thermal disturbance, therefore, the asymptotic behaviour (15) is identical with the observation

of Gross and Mende [19] on the zero-temperature, four-tachyon tree amplitude of closed bosonic

strings. Similarly, the high energy, fixed-angle behaviour of the thermal Veneziano amplitude

(10) turns into

V β
op(s, t, u) ∼ Vop(s, t, u)

∼ −2ḡ2e−4(stu)−3/2 exp

[
−1

2
(s ln s + t ln t + u ln u)

]
(16)
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at any finite temperature, irrespective of the thermal disturbance, which is identical with the

original observation on the zero-temperature, four-point tree amplitude of open bosonic strings

by Veneziano [6,20]. Asymptotic expressions (15) and (16) violate the Cerulus-Martin lower

bound on the high-energy, fixed-angle amplitude which reads [9,21]

|F (s, cos θ)| ≥ exp[−f(θ)
√

s ln s] (17)

with some appropriate function f(θ). The derivation of the lower bound (17) is accomplished

for the polynomial boundedness condition in the Mandelstam representation, but nevertheless

inapplicable in the presence of infinitely-rising Regge trajectories such as eq. (2). Accord-

ingly, the asymptotic behaviours (15) and (16) might cause no conceptual inconsistency to any

physical principle, e.g. unitarity.

The high-energy, fixed-momentum-transfer behaviour of the thermal Virasoro fourmula (6)

is written in the standard Regge formalism as

V β
cl (s, t, u) = g2

R/g2 · V R
cl (s, t) (18)

at any nonzero, finite temperature, where

V R
cl (s, t) ∼ πg2 e−2−t/4

[Γ(2 + t/8)]2

(s

8

)2+t/4
{

i − cot

(
πt

8

)}

→ πg2l4se
−2

(s

8

)2
{

i − 8

πt

}
; t ∼ 0 (19)

and

g2
R ∼

⎧⎪⎨
⎪⎩

g2 2

3

eβωt/2

eβωt/2 − 1
; 2/ωs � β < ∞

g2(kT )2 8

3

1

ωsωt

; 0 < β < 2/ωs

(20)

which is asymptotically reduced to

g2
R ∼ g2ωsls ; s → ∞ ; t ∼ 0. (21)

Here, V R
cl (s, t) is the Regge asymptotic form of the zero-temperature Virasoro formula (1) and

the fundamental string length ls ∼ √
α′ is in association with the string tension which reads

(2πα′)−1. Thus the thermal Virasoro amplitude (6) yields the total cross section of the form

σT
cl(s) �

1

s
ImV β

cl (s, t � 0, u) ∼ πg2
Rl4ss ; s → ∞ (22)

up to a numerical factor in the tree approximation. The asymptotic expression (19) violates

the Froissart upper bound on the high-energy, forward amplitude which reads [8,21]

F (s, t � 0) � Cs(log s)2 (23)
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mentioned above grows with s for l−1
s 
 ωs < (g2/3ls)

−1 ∼ g4/3ωc, while remains constant at

the saturated value (24) for g4/3ωc � ωs � ωc ∼ (g2ls)
−1, where ωc reads the mass level at the

string/black hole correspondence point. Here, the Hagedorn temperature ωc/k is equal to the

maximal value of the Hawking temperature for the correspondent black hole in association with

the minimal value ls of the Schwarzschild radius. Let us call to remembrance that σT
cl(s) can

be identified at ωs ∼ ωc with the production cross section of a black hole of the Schwarzschild

radius ls. The detailed discussion on the string/black hole correspondence as well as the total

cross section σT
cl(s) for the case ωs � ωc ∼ (g2ls)

−1 is referred to the last paragraph.

Similarly, the Regge behaviour of the thermal Veneziano formula (10) is expressed as

V β
op(s, t, u) = ḡ2

R/ḡ2 · V R
op(s, t) (26)

with some appropriate constant C. The derivation of the upper bound (23) is established for

local quantum field theory as an inevitable consequence of unitarity in the sense of the so-

called small Lehmann-Martin ellipse [21] with regard to the nearest, nonvanishing mass, but

nevertheless inapplicable for closed string theory in association with massless modes in the sense

of the absence of a gap. Accordingly, the asymptotic behaviour (19) might cause no conceptual

contradiction to any physical principle, e.g. unitarity. It is parenthetically mentioned that the

cross section σT
cl(s) saturates the Froissant bound

σT
cl(s) ∼ πl2s (24)

up to a logarithmic factor at around ωs ∼ (g2/3ls)
−1. The increasing cross section (22) is

heuristically considered as arising from production of highly excited, stretched strings of length

ωsl
2
s at high energies in the sense of string uncertainty principle à la Veneziano [22] which reads

Δx � 1/Δp + l2sΔp. (25)

The production amplitude of a long, highly excited, closed string state as a massive resonance

in the s-channel is, indeed, dual at sufficiently high energies to the long-distance exchange

amplitude of a short, light or equivalently massless, closed string state in the t-channel, corre-

sponding to the single graviton exchange over a large distance. As already argued by Emparan

el al. [23,24], consequently, the production cross section of a highly massive, closed string state

at mass level ωs is asymptotically described as eq. (22). Let us tentatively postulate validity of

the Froissart bound (23) in string theory without loss of generality. It will then be possible to

claim à la ref. [23] at least at sufficiently small coupling g that the production cross section (22)
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at any nonzero, finite temperature, where

V R
op(s, t) ∼ πḡ2 e−1−t/2

Γ(2 + t/2)

(s

2

)1+t/2
{

i + tan

(
πt

4

)}

→ πḡ2l2se
−1 s

2

{
i +

πt

4

}
; t ∼ 0 (27)

and

ḡ2
R ∼

⎧⎪⎨
⎪⎩

ḡ2 1

2

eβωt

eβωt − 1
; 1/ωs � β < ∞

ḡ2kT
1

2

1

ωt

; 0 < β < 1/ωs

(28)

which is asymptotically reduced to

ḡ2
R ∼ ḡ2ωsls ; s → ∞ ; t ∼ 0. (29)

Here, V R
op(s, t) is the Regge limit of the zero-temperature Veneziano formula (9). Thus the

thermal Veneziano amplitude (10) brings forth the total cross section of the form

σT
op(s) �

1

s
ImV β

op(s, t � 0, u) ∼ πḡ2
Rl2s ; s → ∞ (30)

up to a numerical factor in the tree approximation. The asymptotic expression (27) saturates

the Froissart bound (23) up to a logarithmic factor. The production cross section of a long,

highly excited, open string state at mass level ωs is asymptotically described as eq. (30) in

association with the exchange of a short, light, open string state instead of the single graviton

exchange. It seems that the open string cross section (30) is subdominant to the closed string

cross section (22) at sufficiently high energies such as ωs > (g1/2ls)
−1 ∼ g3/2ωc in proper

reference to the production mechanism of a highly massive, string state. It may be stated

parenthetically that the cross section σT
op(s) turns out to be

σT
op(s) ∼ πg1/3l2s ; g < 1 (31)

at ωs ∼ (ḡ4/3ls)
−1 ∼ g4/3ωc and saturates the Froissart bound

σT
op(s) ∼ πl2s (32)

up to a logarithmic factor at around ωs ∼ (ḡ2ls)
−1 ∼ gωc, which is identical with eq. (24)

and turns out to be equal in magnitude to the production cross section of a black hole of

the Schwarzschild radius ls. Let us tentatively suppose applicability of the Froissart bound

(23) to string theory in general. It will then be possible to argue at least at sufficiently small

coupling g that the production cross section (30) grows with s for l−1
s 
 ωs < (ḡ2ls)

−1 ∼ gωc,

while remains constant at the saturated value (32) for gωc � ωs � ωc ∼ (g2ls)
−1, where gωc

is of the same order as the Planck mass scale. As compared with the argument on the cross

section σT
cl(s), the observation mentioned above will imply that σT

op(s)/σ
T
cl(s) ∼ (gω2

s l
2
s)

−1 < 1

for g3/2ωc < ωs < g4/3ωc, σT
op(s)/σ

T
cl(s) ∼ gωsls < 1 for g4/3ωc � ωs < gωc, and σT

op(s)/σ
T
cl(s) ∼ 1

for gωc � ωs � ωc ∼ (g2ls)
−1. Accordingly, σT

op(s) will be literally subleading with regard to
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σT
cl(s) at g3/2ωc < ωs < gωc, while the open string, thermal tachyon may play the same role as

the closed string, thermal tachyon in respect of the production mechanism of a highly massive,

string state beyond the Planck mass scale (gls)
−1, in consonance with the possible unification

of all forces in nature, i.e. strong, electromagnetic, weak and gravitational interactions. The

detailed behaviour of σT
op(s)/σ

T
cl(s) might still remain unsettled at ultrahigh energies ωs �

g4/3ωc, however.

By way of illustration, the configuration of highly-excited, closed bosonic thermal strings is

sketched after ref. [3] as well as ref. [7] at trans-Planckian energies, i.e.

ωs > Ms = 1/ls ∼ 1/
√

α′ ;

ωs > MP = 1/lP = 1/
√

G ∼ 1/gls, (33)

from the viewpoint of string cosmology [10-15], where MP and lP are Planck mass and Planck

length, respectively. It is of interest to note that Ms ∼ g2ωc, MP ∼ gωc and lP ∼ gls. Here, the

sufficiently small string coupling

g ∼ lP/ls = Ms/MP < 1 (34)

has been postulated in perturbative string scattering and use is made of α′
cl = 1/2 · α′

op ≡ α′ �=
1/4 and G �= 1 besides c = � = k = 1 in the present context. The paradigm of string cosmology

is based upon the hypothesized holographic principle and the conjectured correspondence prin-

ciple. In particular, the degree of freedom inside a black hole, i.e. the number of microscopic

states in relation to a black hole, is described by the Bekenstein-Hawking entropy which is not

proportional to its volume but proportional to its horizon area and eventually turns out to be

the logarithmic mass degeneracy of the correspondent self-gravitating string state at least for

the case of a nearly extremal black hole. The argument that black holes form in ultrahigh energy

collision of two localized objects rests on semiclassical algorithm in local quantum field theory in

the sense of the approximation in which one string scatters in the approximate Aichelburg-Sexl

metric of the other string [25-30]. In addition, strong gravitational dynamics may lead to the

possible failure of local quantum field theory on scales much larger than the Planck length lP at

ultrahigh energies when a given energy ωs is concentrated inside a closed trapped domain, i.e.

a black hole, of the Schwarzschild radius RS ∼ ωsg
2l2s ∼ (ωs/ωc)ls. On the other hand, a highly

excited string of energy ωs can stretch over a distance ωsl
2
s and might yield macroscopic nonlo-

cality much larger than the string scale ls at ultrahigh energies. Such stringy nonlocality could

prevent formation of black holes in high energy collisions, because the string energy distribution

spreads out on scales ωsl
2
s large as conpared to the supposed horizon of the Schwarzschild radius

RS ∼ ωsg
2l2s ∼ (ωs/ωc)ls. There is no manifest indication for such long-string effects, however.

It is once again reminded that creation of a long, highly-excited, string state in the s-channel is

dual at sufficiently high energies to long-distance exchange of a short, light, string state of the

graviton mode in the t-channel. The string interaction producing the exchange of the graviton

H. Fujisaki : Ultrahigh Energy Aspects of Thermal String Scattering8



mode is then nonlocal on the microscopic scale ls but not on the macroscopic scale such as ωsl
2
s

at ultrahigh energies. The scattering amplitude is naively dominated by the long-range gravity

beyond a scale of tidal string excitation which reads [26,29,30] lD ∼ ωsgl2s . Significant tidal

excitation might cause some sort of stringy nonlocality. Moreover, the tidal excitation scale lD

is larger than the supposed Schwarzschild radius RS. As has often been claimed by Giddings

et al. [29,30], however, such tidal excitation effects can not interfere with formation of black

holes in ultrahigh energy collisions, because colliding strings of size ls is concentrated inside a

closed trapped region of size RS at ultrahigh energies ωs > ωc ∼ (g2ls)
−1 by the time one string

experiences a tidal force in the gravitational field of the other string. Thus there exists no man-

ifest indication for such stringy nonlocality due to tidal excitation. Accordingly, extendedness

of the string will not cause long-distance nonlocal effects which interfere with formation of a

closed trapped surface at ultrahigh energies ωs > ωc ∼ (g2ls)
−1, at which the Schwarzschild

radius RS exceeds the string length ls. We are then led à la [29,30] to principal conclusions:

Firstly, there will be no adduction indicating macroscopic nonlocality intrinsic to extendedness

of the string. Secondly, black hole formation will be inherent in strong gravitational dynamics

without interference due to stringy nonlocality. Thirdly, the possible breakdown of locality at

scales RS will be inevitably associated with breakdown of gravitational perturbation theory at

the black hole threshold. Accordingly, nonperturbative gravitational physics will be essentially

nonlocal. Finally, violation of asymptotic bounds for local field theory, such as the Froissart up-

per bound, may be intimately connected with macroscopic nonlocality intrinsic to gravitational

nonperturbative dynamics.

In the investigation of the string/black hole correspondence, by way of parenthesis, it is

of practical importance to note a paradox that the typical scale of a highly-excited string at

mass level ωs will be described in the absence of gravitational self-interaction as the radius of

a random walk composed of ωsls steps and length ls which reads [11,13,23,31] Rrw ∼ ω
1/2
s l

3/2
s

at high energies in accordance with the corresponding string entropy Ss ∼ ωsls. The random

walk radius Rrw can never contract down to the string scale at ωs > Ms. As already argued

by Veneziano et al. [31], however, the pathological situation mentioned above will be remedied

in the microcanonical ensemble paradigm of self-gravitating strings. As a consequence of the

competition between the centrifugal barrier and the gravitational potential, indeed, the size of

a typical self-gravitating string is determined by [31] Rtyp ∼ 1/g2ωs; (ωsls)
−3/2 � g2 � (ωsls)

−1,

which correctly interpolates between the larger random walk size Rrw and the compact string

size ls. As has often been emphasized by ourselves [32,33], there appears the maximum temper-

ature Tc ∼ Ms of string excitation, irrespective of the detailed structure of the thermal string

ensemble, beyond which the thermal string amplitude is infrared divergent. The maximum

temperature Tc is of the same order as the Hagedorn temperature T̂H ∼ Ms of the thermal

string ensemble, beyond which the canonical partition function diverges for sufficiently large
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values of mass. It may be stated parenthetically that T̂H = Ms/4π for the bosonic thermal

string, T̂H = Ms/2
√

2π for the type II thermal string and T̂H = Ms/(2 +
√

2)π for the heterotic

thermal string. The critical temperature Tc ∼ Ms seems to be interpreted as the phase transi-

tion temperature from the overall standpoint of string thermodynamics. The string/black hole

correspondence is then recapitulated as follows: The string entropy Ss ∼ ωsls at mass level ωs

turns out to be the same order as the Bekenstein-Hawking entropy SBH ∼ ω2
sg

2l2s ∼ (ωs/ωc)Ss of

the corresponding black hole when the string length ls becomes of the order of the Schwarzschild

radius RS ∼ ωsg
2l2s ∼ (ωs/ωc)ls. The effective coupling constant squared g2

eff is asymptotically

reduced to g2
eff ∼ g2ωsls ∼ ωs/ωc for mass level ωs � Ms. If g2 < (ωsls)

−1, i.e. ωs < ωc, then,

the Hawking temperature TH ∼ (∂SBH/∂ωs)
−1 ∼ (ωsg

2l2s)
−1 ∼ R−1

S ∼ (ωc/ωs)Ms is higher

than the Hagedorn temperature T̂H ∼ Ms and the string will spread out on scales much larger

than the supposed horizon so that the black hole is depicted as a continuum string state. If

g2 > (ωsls)
−1, i.e. ωs > ωc, on the other hand, the Hawking temperature TH is lower than the

Hagedorn temperature T̂H and the horizon will be much bigger than the string length scale so

that the string energy is concentrated inside a closed trapped domain and consequently the

string behaves as a black hole. Accordingly, the criterion g2
eff ∼ 1 will effectively describe the

string coupling squared at the string � black hole transition point. Thus g2
eff plays the role of

the order parameter at asymptotically high energies. As a consequence, the critical tempera-

ture Tc is naturally interpreted as the phase transition temperature at which the thermal string

configuration turns into a localized black hole and vice versa. The production cross section

σT
BH of a black hole at mass level ωs is geometrically written in the form

σT
BH ∼ πR2

S

∼ πω2
sg

4l4s ∼ π(ωs/ωc)
2l2s ; ωs � ωc ∼ 1/g2ls (35)

which turns out to be

σT
BH ∼ πl2s (36)

at the string � black hole transition point:

g2
R ∼ g2

eff ∼ g2ωsls ∼ ωs/ωc ∼ 1. (37)

It is of interest to note that the production cross section (36) is identical with eq. (24), i.e.

the saturated production cross section of a highly-excited string state at mass level ωs for

g4/3ωc � ωs � ωc, or equivalently (ωsls)
−3 � g2 � (ωsls)

−1, which is in turn equal to eq.

(32) for gωc � ωs � ωc, i.e. (ωsls)
−2 � g2 � (ωsls)

−1. As a salient feature of our argument

in ref. [7], the most probable microcanonical distribution of primordial black holes is self-

consistently described at ultrahigh energies in asymptotically flat space through the so-called

single-massive-mode dominance scenario in the sense that most of the mass, most of the charge
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and most of the angular momentum of the whole system converge on a single energetic black

hole. As combined with the present argument on the string/black hole correspondence, then,

the critical temperature Tc is naively reminiscent of the newfashioned percolation temperature

at which the multi-black hole ensemble coalesces into a single primordial black hole of the critical

mass ωc which eventually transmutes into a single primordial string mode of the same mass.

The observation mentioned above will be of active interest in association with the argument

à la Susskind et al. [15] that the Hagedorn temperature T̂H effectively describes the so-called

percolation temperature for the multi-string distribution to coalesce into a single string state.

It still remains to be clarified in a nonperturbative fashion, however, whether or not the critical

temperature Tc truly prescribes the disintegration point for the enigmatic phase transition of

the primordial black hole system, and whether or not the so-called percolation scenario of

the Hagedorn transition near Tc is fully effectual in elaborating the possible linkage between

self-gravitating single string states and multi-string states.

* * *
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