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Abstract

Part I of this paper reexamines the consumption demand under uncertain future wage income. 

In particular, we comprehensively reexamine the “Expected Utility Maximization Method” (EUM, 

developed by Hall[1978]), and propose an alternative method (“Certainty Equivalence Method”, CEM) 

to derive the consumption demand under uncertainty. We emphasize that the consumption demand 

should be established as a stochastic variable before considering its expected utility, an important 

logical point which seems to have escaped appropriate professional attention. We will show that, in 

contrast to EUM, our method (CEM) is applicable to any type of risk preference.

Based on Part I, we examine in Part II how to derive a refutable hypothesis concerning the 

consumption demand as a stochastic process, consistently with the consumption demand derived by 

CEM. Again, it is necessary to reconsider the problem comprehensively, particularly in relation to 

the risk preference of the consumer. It will be shown that the risk neutrality is one of the important 

sufficient conditions for the consumption time series to have the martingale property.

*	 Comments on earlier drafts by Professors Yoshifumi Fujigaki, Yasuhiro Nakagami and Tomoo Inoue are kindly 
acknowledged.
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Introduction

This paper comprehensively reexamines the consumption demand under uncertainty 

represented by stochastic wage-income path. We divide the paper into two parts : Part 

I examines the consumption demand when the uncertain wage-income path is given as 

a (joint) statistical distribution; Part II examines the dynamic environment in which the 

distribution of the wage-income path changes as historical time develops, and we shall 

analyze the time series property of consumption demand as a stochastic process.

In part I, two basic but conceptually different problems must be solved : one is (a) to 

optimize the inter-temporal consumption path; and another is (b) to reflect consumer’s 

risk preference over the optimized consumption path.

Since Robert Hall’s famous paper (Hall[1978]), the “Expected Utility Maximization 

Method (EUM)” has been used as the standard technique as well as the basic behavioral 

assumption to solve the two problems. As we shall see below, however, EUM has several 

shortcomings including the fact, particularly conspicuous when the optimization target 

is additively separable, that only the risk averting consumer is possible to analyze. 

The more basic shortcoming, however, is that EUM tends to mix up the conceptually 

different problems (a) and (b) in attempting to solve them simultaneously; the economic 

logic behind this method, concerning in particular the role of risk preference in the 

consumption choice, is by no means clear as it might be widely recognized.

In an attempt to rectify these shortcomings, we propose what we shall call the 

“Certainty Equivalence Method (CEM)” as more appropriate to solve the problem at 

hand. We will show that the problems (a) and (b) are to be solved consecutively but 

logically separately as the First and the Second Steps. In the First Step, the problem 

(a) is to be solved, though not necessarily by applying a von Neumann–Morgenstern 

(NM) type expected cardinal utility. As we shall see, there is no presumption that the 

problem (a) must be solved as the Expected Utility Maximization problem. Rather, the 

problem to be solved in the First Step is to define the optimum consumption demand as 

a stochastic variable, a task which is to be solved by maximizing a target function (not 

necessarily of NM type) with respect to each and every state of the stochastic budget. 

In our view, it is logically inappropriate in the First Step to consider the expected utility 

of consumption demand, for the consumption demand in that step is not yet defined as 

stochastic at all.
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Once the First Step is completed, we may consider its expected utility, which we 

shall do in the Second Step by introducing the NM utility function enabling us to 

consider the risk preference. In particular, we shall solve the problem (b) in the Second 

Step by considering the Certainty Equivalence, and use the NM utility function for 

that purpose. By making use of “Certainty Equivalence”, the relationship between the 

consumer’s risk preference and the flow consumption demand is economically much 

more clear under CEM than under EUM. Further, CEM makes it possible to deal with 

any type of risk preference. 

The analysis of Part I is the basis of analyzing the consumption demand as a 

stochastic process, the subject of Part II. Again, it is a field of research initiated by 

Hall, and it has attracted wide attention1 owing probably to a well-known statement that 

“consumption is a random walk apart from trend2”. Given that CEM differs from EUM, 

it is necessary to examine the property of consumption as a stochastic process under 

CEM.

In Part II, we shall focus on the dynamic behavior of consumer who observes the 

time series data of the market wage-income (treated as exogenous and stochastic), 

and then uses that information to compose the subjective stochastic distribution of 

human capital, the discounted sum of the future wage-income path. Some behavioral 

hypotheses will be proposed, consistently with the mathematical treatment of stochastic 

process, to describe the way how the consumer composes the subjective stochastic 

distribution. Only after this somewhat roundabout step, we may reasonably consider the 

property of the consumption time series as a stochastic process.

With respect to the consumption stochastic process, we shall show sufficient 

conditions under which the consumption may show the martingale (or random walk) 

property. These conditions will turn out as more rigid than are usually recognized; they 

include, in particular, the risk neutral consumer with a homothetic utility function to 

compose the inter-temporal consumption path. A specific informational environment, to 

be defined as “Stochastic Perfect Foresight”, is also crucial.

1	 See for instance Flavin[1981], Cambell-Deaton[1989], Deaton[1987], Epstein-Zin[1989], Flavin[1993], Kreps-
Porteus[1978], Selden[1978] and Quah[1990]. See also Romer[2012], Attanasio[1999] and Blanchard-
Fischer[1989] for the relevant articles.

2	 Hall[1978], p.975.
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Part I : Consumption Demand under Uncertainty

I-1 : The Model : Basic Notations

At time T, the consumer observes ωT, the market wage-income for period T, and 

optimally chooses the inter-temporal consumption plan vector

≡ (CT, , …, , …).

CT is the consumption demand for period T, while , J≥1 is the consumption demand 

for period T+J as planned at time T3.

The wage-income W and the accrual from the non-human wealth N compose the 

consumer’s current income. We assume that the consumer, after observing ωT, composes 

the joint probability function

fT( )≡ fT( , , …, , …)  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 1).

The variable ≡ ( , , …, , …) is a stochastic vector whose J-th element 

 (J ≥1) is the wage-income of the period T+J4, as expected by the consumer who 

has observed ωT (and other information available) at the beginning of period T.

Notice that the uncertainty of the market wage-income, ωT, is the basic source of 

uncertainty of the model. The consumer interprets that uncertainty into the stochastic 

distribution (I : 1) of , a stochastic vector which shows the consumer’s subjective 

forecast of the future wage-income path. Further to be noticed is that the uncertainty 

of consumption demand, to be discussed below, must be derived endogenously from, 

and consistently with, the uncertainty of the wage-income path as assumed by (I : 1), 

for the wage-income stream and the consumption stream are interrelated by the budget 

constraint.

We define the human capital at period T, denoted by HT, as : 

 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 2-1)

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                        (I : 2-2),

3	 CT+J and (j ≥1) should be conceptually distinguished, although they are often mixed up.  is the 
consumption at period T+J, as planned in period T. CT+J (j≥1), on the other hand, is the actual consumption in 
period T+J. The former is the planned future consumption, as planned in period T.

4	 The subscript T attached to the variable  means that this stochastic variable is composed by the consumer at 
time T, the physical time. On the other hand, the super script T+J (J=1, 2, …) means the future time as perceived 
by the consumer facing the optimization problem at time T. T+J, therefore, is not the physical time per se.
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where r is the rate of interest (assumed for simplicity as non-stochastic and constant). 

The distribution of  (the stochastic human capital at period T+1, as expected at 

period T) is derived from the distribution of , with the parameter r. (The variable HT, 

with the parameter r, is also stochastic; we may alternatively write it as HT(r)).

Using (I : 2-2), we also define , the human capital at period T+2, as expected at 

period T. It satisfies : 

 ·  ·  ·  ·  ·  ·  ·  ·        (I : 2-3).

Further, we define the wealth (or budget) at the beginning of period T, denoted by BT, as :

BT ≡HT+(1+r)NT-1 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                        (I : 2-4), 

where NT-1 stands for the non-human capital at the beginning of the period T-1.

I-2 : The Certainty Case

Let us start with the certainty case. If the variables , J ≥1 are non-stochastic, 

then so are HT and BT, and the consumer selects the optimum consumption plan 

out of all the plans that satisfy the budget constraint. In order to select the optimum 

consumption plan, it is enough if each consumer has the individual preference ordering. 

Corresponding to BT, there exists an optimum inter-temporal consumption plan 

that lies on the income-consumption curve corresponding to the interest rate r. The 

property of the income-consumption curve itself depends on the preference ordering 

of the consumer. Using a strictly quasi-concave function V to represent the preference 

ordering, the optimum consumption plan should satisfy : 

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                    (I : 3-1)

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                         (I : 3-2)

 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 3-3).

The equations (I : 3-1) and (I : 3-2) specify how CT, , , … should develop on 

the optimum consumption path, i.e., the Euler equation. Combined with the budget 

constraint (I : 3-3), and given the value of BT, the optimum dynamic consumption path 

is determined. Once CT is determined, and satisfying the following flow identity, the 
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non-human capital of the next period (NT) is determined : 

NT -NT-1 ≡ r NT-1+ωT -CT ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                    (I : 3-4).

The consumption function implied by (I : 3-1, 2, 3) is generally expressed as

CT = (r, BT) ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 4).

Similarly, , J ≥1 is a function that depends generally on r and BT, the latter further 

depending on HT ≡ωT+ .

At time T, where HT, ωT and NT-1 are given, the model determines the optimum 

inter-temporal consumption plan (CT, , , …). The equation (I : 3-4) then 

determines NT, while (I : 2-4) determines the next period budget BT+1.

I-3 :	Consumption as a Stochastic Variable, and the Certainty Equivalence 

Method

Let us now state our proposal concerning the consumption demand under 

uncertainty. We now assume that BT is a stochastic variable the distribution of which, 

given NT-1, is derived from (I : 2-4) and fT( ). We propose the Certainty Equivalence 

Method (CEM) as the behavioral hypothesis of each consumer. Because CEM is quite 

different from EUM, we shall compare the two methods in the next section. CEM 

asserts that the consumption demand under uncertainty is composed by way of the 

following two steps : 

Proposal 1 (First step)

The optimizing consumer knows that the statistical distribution of BT will occur as 

BT(a), BT(b), …etc with probability π(a), π(b) and so forth. We shall refer to BT(i), i=a, 

b, etc., as the “i-th state” of the stochastic variable BT.

We assume that the consumer at the First Step, corresponding to each and every 

state of budget BT(i), will optimize the preference ordering in order to obtain the “state-

wise optimum consumption plan (i)*”. Because BT(i) occurs with probability π(i), the 

optimum consumption plan (i)* itself will be regarded by the consumer as stochastic 

with probability π(i).

Notice that because this optimization is carried out for each “state”of BT, it requires 

only the preference ordering as employed in the optimization under certainty. The First 

Step optimization is carried out exactly the same as the Certainty Case, except that the 

optimizing conditions as well as the budget constrainT (I : 3-1)~(I : 3-3) are defined in 
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terms of each “state”.

The optimum consumption plan vector ≡ ( , , …), derived by this 

procedure, is a stochastic vector whose each “state” is expressed as (i), i =a, b, … 

Each “state” value vector of (i) (including its first element (i)) represents the 

optimum consumption plan for the “i-th state budget”, BT(i)5. The optimum stochastic 

vector  is distributed over the income-consumption curve corresponding to the 

interest rate r.

The logical implication of the First Step is that the uncertainty of our model 

derives only from BT, not from the consumption plan as such. As a logical matter, 

the uncertainty of the consumption plan should be endogenously defined, within the 

model, by the First Step. Nevertheless, practically all of the existing literature starts the 

analysis by maximizing the expected utility of consumption6. How can one consider, 

and maximize, the expected utility of a consumption plan before somehow defining 

the consumption plan itself as stochastic? A logical flaw may be involved in such a 

procedure, and the existing literature tends to neglect it.

Now that we have composed the optimum  as stochastic, its first element  is 

also composed as stochastic. This means, however, that the consumption demand at 

period T is not yet determinate. What has been carried out in the First Step is merely to 

compose the “optimum stochastic” consumption vector , the optimality being with 

respect to each “state of budget”.

5	 As a formal matter, it is possible to introduce a strictly quasi-concave utility function V, the value of V being 
interpreted as cardinal, to carry out the optimization of the First Step. However, what is needed for the First 
Step optimization is the preference ordering implied by V, not the cardinally numerical value of V as such. The 
numerical value of V is relevant to the First Step only in so far as it represents the preference ordering. Although 
it is possible in the First Step to regard the numerical value of V as cardinal, this maximization result depends 
only on the value of V regarded as the ordinal number.

6	 To quote some of the literature, Epstein-Zin[1989, p.940, 941], drawing on Kreps-Porteus[1978], starts their 
analysis by assuming the space of consumption lotteries each of which is endowed with some probability density. 
Selden[1978], similarly, begins the analysis by assuming the stochastic distribution of future consumption. 
Kreps-Porteus, op.cit. (p.188, Fig.1) shows a probability tree each branch of which is endowed with probability 
density, without mentioning how each probability value is assigned. In short, the stochastic consumption space is 
treated as given, followed by the choice of the best consumption lottery by the consumer.

 	 We in contrast think that a) “the space of consumption lotteries” should be treated not as given but as something 
which is specified by each economic agent, in accordance with the stochastic version of (I : 3-3), the temporary 
budget constraint; and that b) it is the probability distribution of the latter (i.e., the stochastic version of the 
temporary budget constraint, i.e. (1-3-3)’ below) that can be treated as given.
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In order to choose the consumption demand of period T as a determinate value, 

one must know how the consumer subjectively evaluates the optimum stochastic 

consumption plan . It is for this purpose that the consumer’s subjective evaluation 

of uncertainty is introduced in the Second Step. The Second Step of our proposal is as 

follows : 

Proposal 2 (Second step)

Having composed the “optimum stochastic consumption plan ”, the consumer 

is now able to choose a deterministic consumption demand by applying the “Certainty 

Equivalence Method (CEM)”. In order to do so, a function to evaluate the utility of 

the stochastic vector  is necessary. It is for this purpose that the von-Neumann – 

Morgenstern utility function (NM function, hereafter) is introduced in the Second Step. 

The role of the NM function is to evaluate the cardinal utility of the optimum stochastic 

consumption plan vector ( ) derived in the First Step.

Notice that the optimum vector , derived in the First Step is distributed only over 

the income-consumption curve corresponding to the interest rate r, not over the entire 

inter-temporal consumption space. It is suggested then that the role of the NM function 

in the Second Step is not to evaluate any of the consumption plans over the entire 

consumption space, but to evaluate the expected utility of the optimum consumption 

plan over the income-consumption curve alone. In this respect, the role of the NM 

function is different from that of the quasi-concave function V in the First Step, which is 

defined over the entire inter-temporal consumption space. Hereafter, we use the symbol 

U to represent the NM function employed in the Second Step.

As explained below, one may use U to define uniquely the “Certainty Equivalence 

Consumption plan (a deterministic vector) corresponding to the “optimum stochastic 

consumption plan ”. By definition the utility of  and the expected utility of , as 

calculated by U, are the same. We propose to regard , the first element of , as the 

deterministic consumption demand of the period T.

I-4 : A Diagrammatic Presentation

We have put forward the proposals 1 and 2 as the behavioral hypothesis of the 

consumer under uncertainty. We now use Fig.1 to explain the two steps we propose. For 

diagrammatical simplicity, we assume only two periods (T and T+1) in Fig.1, but the 
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analysis is a general one, readily extendable to include more than two periods.

(First Step)

Consider the budget constrainT (I : 3-3) under uncertainty. BT is stochastic with 

r as the parameter, which we write as BT(r). For simplicity, we assume BT(r) to have 

only two “states” BT(a; r) and BT(b; r), with probabilities π(a), π(b), π(a)+π(b)=1. The 

budget constraints under uncertainty are : 

 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 3-3)'.

In Fig.1, the line B(a) is the budget constraint of the state a. It intersects with the 

horizontal axis at (BT(a; r), 0), with the slope –(1+r). Likewise, B(b) is the budget 

constraint of the state b, with the same slope. It is assumed that BT(a; r)<BT(b; r).

CT

CT
T+1

KK(r)

O

a

b

B(a)

B(b)

Fig.1

Fig.1 corresponds to (I : 3-2), the optimum condition between CT and CT
T+1. KK(r) 

is the income-consumption curve corresponding to the interest rate r. Moving upwards 

along KK(r) from a to b, inter-temporal consumption plans with successively higher 

preference ordering will appear.  is the inter-temporally optimum consumption 
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plan vector for the budget B(a), because the slope of the budget line is the same as 

the marginal rate of substitution (MRS) at the point a. Likewise,  is the optimum 

consumption plan if the budget is B(b). The probability with which  is optimal is the 

same as the probability of the budget BT(a; r) to occur, i.e., π(a). Likewise,  is the 

optimal consumption plan with probability π(b). Further, the MRS of consumption, both 

at a and at b, is equal to the slope of the budget line, 1+r.

What is the purpose of the First Step? It is merely to def ine the optimum 

consumption plan as a stochastic variable. Unlike the past literature, we do not start 

our analysis by “maximizing the expected utility of consumption”, simply because the 

expected utility of consumption is calculable only after the consumption is somehow 

defined as a stochastic variable.

To define the consumption as a stochastic variable, the First Step optimization has 

been carried out as the “state-by-state optimization”. Each and every result of the First 

Step optimization concerns a specific state of budget such as BT(a; r), other states (such 

as the budget line B(b)) being irrelevant to the optimization under the state a. Because 

the First Step optimization is carried out “separately state-by-state,” the optimization 

result for each state is invariant whether the optimization target is V or ϕ (V), ϕ ' >0.7

Notice that the First Step optimization does not reflect the consumer’s risk 

preference; it must be so, because the transform Φ (V), ϕ ' >0 generally changes the 

risk preference (if V is a NM function and unless Φ  is linear or affine). Yet the First 

Step optimization result is invariant whether V or Φ (V), ϕ ' >0 is employed as the 

optimization target. Then, the First Step optimization cannot reflect the consumer’s risk 

preference, even if the value of V as such could be interpreted as cardinal; the First 

Step optimization reflects only the preference ordering information implied by V. It is 

therefore unnecessary to treat the numerical value of V as cardinal and carry out the 

First Step optimization as the Expected Utility Maximization (EUM). To do so may 

not only involve the logical flaw suggested above; it is in fact unnecessary to treat V as 

cardinal and carry out EUM.

7	 It is important to recognize that even if we use the functions such as (I : 7) or (II : 10a) below --- which are both 
additively separable NM utility functions --- the First Step optimization requires only the preference ordering 
implied by these functions.
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It must be recognized that the optimum consumption plan  has been composed by 

the consumer as a stochastic vector in the First Step.  is a stochastic vector with two 

states (a) and (b), and with probabilities π(a) and π(b) respectively. In Fig.1, (a) 

is expressed as , while (b) as . This completes the First Step.

(Second Step)

Let us now proceed to the Second Step, using Fig.2. We have composed in the 

First Step the stochastic vector , each state of which gives the “state-wise optimum 

consumption plan”. , the first element of  is a stochastic variable, too. Because the 

consumer does not know which state (either a or b) actually occurs, the consumption 

demand for period T is not determinate as yet. In the Second Step, we introduce U, 

an appropriate NM function to evaluate the uncertainty of the optimum stochastic 

consumption plan. By using U, we may uniquely define , the certainty equivalence of 

, and choose the consumption demand for period T as a deterministic value.

CT

CT

BT

T+1

CT
T+1

KK(r)

),Q

O

a

b

B(a)

(r)

B(b)

CT(

Fig.2

Consider U, a continuous NM utility function, defined over all the consumption 
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plans that lie on KK(r). Notice that U is not defined over the entire CT -  space; 

it is defined over KK(r) alone, and as such, U must be clearly distinguished from the 

preference ordering (i.e., the function V) as appeared in the First Step. U is a function 

giving cardinal evaluation of each and every consumption plan on KK(r), including  

≡ (a) and ≡ (b). We assume U is monotonically increasing if one moves along 

KK(r) from a towards b. In Fig.2, U( (a))< U( (b)).

The expected utility of the optimum stochastic consumption plan , denoted as 

μ[U( )]8, is expressed as : 

μ[U( )]≡π(a)U( (a))+ π(b)U( (b))  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·             (I : 5).

Notice that calculating the expected utility of  as above has no logical flaw suggested 

earlier, because we have already composed  as stochastic in the First Step. The value 

of μ[U( )] lies between U( (a)) and U( (b)).
Using μ[U( )], we may now uniquely define , the certainty equivalence of , 

as a determinate vector on KK(r) that satisfies : 

U( )=μ[U( )] ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 6).

With U continuous and monotonically increasing over KK(r),  must exist somewhere 

on KK(r) between the points a and b of Fig.2. We show it by the point Q. The vector  

is what we now call the “Certainty Equivalence consumption plan ”. Because  is 

not a stochastic but a deterministic vector, its first element is what the consumer may 

actually demand in period T.

The dotted line of Fig.2 passes Q and is drawn parallel with B(a) and B(b). We call 

it the “Certainty Equivalence Budget Line”. By definition the certainty equivalence 

consumption plan  lies on the Certainty Equivalence Budget Line as well as on the 

income consumption line KK(r). Then the MRS of consumption at Q is equal to 1+r.

(Risk Preference)

We now consider how the risk preference is related to the consumption demand. 

8	 We use the symbol μ(X) (rather than the symbol E(X)) to express the population mean of the relevant stochastic 
variable X. The symbol E is reserved for the purpose of expressing the conditional expectation of the relevant 
stochastic variable X, conditional with respect to a specific σ-algebra. Thus, the expression μ(X) stands for a 
numerical value, while E(X| ) stands for the -conditional expectation of the -measurable stochastic variable 
X, where . E(X| ) is a stochastic variable itself, not a numerical value. Such a distinction of μ and E 
becomes relevant when one analyzes the consumption as a stochastic process, which is dealt with in Part II.
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In general, the risk preference is defined in terms of the relationship between U(μ[X]) 

and μ[U(X)], where X is a stochastic variable and U is the NM utility function. In the 

present context, U is defined only over the consumption vectors on KK(r). We then 

define a risk averse consumer as the one who satisfies

U( |KK)>μ[U( )], 
where we define |KK as the consumption plan on KK(r) which satisfies the mean 

budget π(a)BT(a; r)+π(b) BT(b; r). Because |KK is defined as a vector on KK(r), its 

NM utility is able to evaluate by U.

Notice that |KK is defined not as the mean vector of the vectors  and .

The latter coincides with |KK only when KK(r) is a straight line that passes the 

origin. As we move along KK(r) from a to b, consumption plans with successively 

higher preference ordering will appear, and the one that satisfies the mean budget is 

defined as |KK. 

Applying this definition to (I -6), the risk averse consumer will satisfy : 

U( |KK)>U( ).
Because both |KK and  lie on KK(r), and because U is monotonically increasing, 

the budget that satisfies |KK is higher than the budget that satisfies , if the 

consumer is risk averse. If Q in Fig.2 is the certainty equivalent consumption plan of a 

risk averse consumer, then the Certainty Equivalent Budget Line (i.e., the dotted budget 

line of Fig.2) lies below the mean budget line of the same consumer9.

Combining the proposals 1 and 2, we propose the following as the behavioral 

assumption of the consumer under uncertainty : 

“Consumer under uncertainty composes, in the First Step, the optimum stochastic 

consumption plan vector , and then (in the Second Step, and using the NM function 

U) composes the certainty equivalent consumption plan , corresponding to 10. The 

consumption demand for period T is chosen as the first element of the vector ”.

9	 For a risk neutral consumer, the certainty equivalent consumption plan is the intersection of KK(r) with the mean 
budget line. For a risk loving consumer, the certainty equivalent consumption plan is the intersection of KK(r) 
with a budget line above the mean budget line. A risk neutral (averse) agent is more cautious than a risk loving 
(neutral) agent when determining the consumption demand.

10	 To our knowledge, Friedman[1957] suggested, although very vaguely, the use of certainty equivalence in deriving 
the consumption demand under uncertainty. See Friedman, op.cit., p.15.
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(NM function Z to evaluate the uncertain budget)

We call this proposal the “Certainty Equivalence Method (CEM)”, and compare it 

in the next section with EUM. Before doing so, however, we show a less complicated 

way to calculate the certainty equivalent consumption plan .

The CEM above has used the NM function U to evaluate the uncertainty of the 

optimum stochastic consumption plan vector . Being a function of a vector with 

many elements, U is a multi-variable function. Notice now that a single-variable NM 

function Z, which evaluates the uncertainty of the stochastic budget BT, can be defined 

consistently with U by the following procedure.

U has been defined with respect only to the consumption vectors on KK(r). 

Considering the duality of the First Step optimization, there is a one-to-one 

correspondence between

(1)	 Human capital in the state i   (HT(i)), 

(2)	 Budget in the state i   (BT(i;r)), 

and

(3)	 The optimum consumption plan in the state i   ( (i)).
Using the correspondence, and consistently with U, we may define another NM 

utility function Z to evaluate the utility of BT(i) as

Z(BT(i;r))≡U( (i)).
Thus defined, the function Z is interpreted as a single-variable NM utility function to 

evaluate the uncertainty of the stochastic variable BT.

If U( (a))<U( (b)), the correspondence above implies BT(a; r)<BT(b; r). Then the 

function Z is monotonically increasing with respect to the increasing budget; and if U is 

risk averse, then Z is risk averse (noticing that U and Z take the same value with respect 

to each budget state and the optimum consumption plan corresponding to that budget 

state). 

Using the stochastic variable BT(r), the certainty equivalent budget (r) is now 

defined as a deterministic budget which satisfies : 

Z( (r))=μ[Z(BT(r))].

Because Z is a single-variable monotonically increasing function, (r) can be written 
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uniquely as : 

(r)=Z-1 μ[Z(BT(r))].

Although the certainty equivalence consumption plan  may be calculated by 

the procedure already explained, it is also possible to calculate it by using Z. Instead 

of starting the Second Step by postulating U, we may as well start the Second Step 

by postulating Z. If we do so, we use Z to calculate (r). The Certainty Equivalence 

Budget Line which we used in Fig.2 is mathematically defined as : 

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                         (I : 3-3)''.

 is then calculated as the intersection of KK(r) with (I : 3-3)''.

I-5 : Our Proposal (CEM) as Compared with Hall’s Method (EUM)

This section explains the optimization method adopted by Hall, op.cit.(Expected 

Utility Maximization, EUM), and compares it with our own (Certainty Equivalence 

Method, CEM). We will show that CEM is possible to deal with any type of risk 

preference, while EUM may basically deal only with risk averters, if the target function 

is specified as additively separable11. We will also show that EUM tends to mix up the 

two different aspects of the problem at hand, namely (a) to optimize the inter-temporal 

consumption path; and (b) to reflect consumer’s risk preference over the optimized 

consumption path. We will further show that EUM may be interpreted as a special 

(or, restricted) case of CEM, and compare the welfare implication of the consumption 

demand under the two methods. 

(EUM : Hall’s Method)

Let us first examine EUM, i.e, Hall’s method. As we have seen, our approach (CEM) 

requires two steps to obtain CT as a determinate value. In contrast, EUM requires 

effectively the First Step alone, although the First Step optimization is carried out 

differently from CEM.

Hall’s consumer is assumed to maximize the expected value of the following 

additively separable utility function, with δ as the utility discount factor, and u as the 

11	 Most of the relevant articles assume the additively separable utility function as the target function.
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one period utility function12: 

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·              (I : 7).

His “principal result” (Hall, op.cit. p.974) requires the following equality be 

satisfied by the optimum consumption demand between CT and , and we shall 

hereafter refer to it as “Hall’s Theorem” : 

 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 8)13 14.

In (I : 8), π(i) is the probability with which each “state” of BT, and hence each “state” 

of the stochastic variable (i), occurs. How is Hall’s theorem derived? An elementary 

derivation of the theorem, which we shall do by comparing CEM with Hall’s method, is 

as follows15.

First, consider (I : 3-2), the optimum condition between CT and  under certainty : 

 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 3-2).

Now suppose that the target function V is replaced by the additively separable 

function (I : 7), and suppose that the agent is under uncertainty. In Certainty Equivalence 

Method (CEM), the First Step optimum condition under uncertainty requires, for each 

and every state of budget, BT(i), 

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                     (I : 3-2)'

be satisfied, where CT(i) and (i) denote the inter-temporal consumption allocation 

between T and T+1 when the budget is BT(i) (occurring with the probability π(i)). 

Multiplying both sides by π(i) and adding up with respect to all the i’ s, we obtain :

12	 A logical question pertaining to Hall’s procedure is this : how the expected utility of consumption can be 
maximized at the first step when the consumption itself has not yet been defined as stochastic?

13	 Because Hall[1978], p.974 does not distinguish  from CT+1, he describes that μ[u'(CT+1)] =u'(CT) is 
established at the optimum. As noted before, however,  and CT+1 are conceptually different. Hall’s Theorem 
should be written as (I : 8).

14	 If r=δ, T=1 and if one does not distinguish  from C2, then (I : 8) implies u'(C1)=E[u'(C2)]. If u is quadratic, 
further, then an expression C1 =E[C2] is derived, and this last expression has been often associated with some 
kind of “Certainty Equivalence”. We find it difficult to understand this terminology. The textbook definition of 
the certainty equivalence is what has been used above in section I-4, and it has nothing to do with the relationship 
C1 =E[C2] derived from the quadraticity of u.

15	 To see Hall’s original derivation, see Hall, op.cit., Appendix 1 (Theorem).
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 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·           (I : 8)'.

Let us compare (I : 8)' with Hall’s theorem (I : 8). They look quite similar, but yet 

clearly different because the right hand sides are not the same. In Hall’s theorem (i.e., 

EUM), RHS is u'(CT), while the First Step optimum condition under CEM requires RHS 

be equal to μ[u'(CT)].

The difference between EUM and CEM, however, disappears if the First Step 

maximization under CEM is carried out not only under the state-wise budget constraints 

but also under an additional constraint

CT(i)=constant for any i  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (I : 9), 

for μ[u'(CT)]=u'(CT) in this particular case.

The constraint (1 : 9) postulates that Hall’s consumer chooses the optimum CT 

irrespective of the state of BT (in other words, the consumer composes the optimum 

“distribution” of CT as a single point). This postulate is an additional behavioral 

hyopothesis which our method (CEM) precludes. In a way, EUM and CEM are the same 

except that EUM implicitly imposes not only the state-wise budget constraints but also 

the additional constraint (I : 9).

We are now able to characterize Hall’s optimization procedure as essentially 

consisting of two stages : (i) In the first stage, the optimum inter-temporal consumption 

plan , J ≥1 is composed as a stochastic vector, while treating CT parametrically 

(Because CT is treated as parameter at this stage, the maximized expected utility is a 

function in terms of CT); and (ii) in the second stage, the optimum value of CT that 

maximimizes the expected utility of consumption path (CT, ) (J ≥1) is found. 

Treating CT parametrically at the first stage means that Hall’s optimization is carried out 

under the additional constraint (I : 9), which is the essential difference between EUM 

and ECM16.

In Hall’s procedure, the two stages (i) and (ii) are apparently carried out 

16	 Although we stated above that the difference between the two methods is shown by the difference of the RHS 
of (I : 8) and (I : 8)’, this distinction applies only when the target function is additively separable. If the target 
function is more general, the difference of the RHS of (I : 8) and (I : 8)’ disappears unless (1 : 9) is additionally 
assumed. Therefore, the essential difference between the two methods is the additional constraint (I : 9).
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simultaneously. His method, therefore, requires virtually the First Step of CEM alone, 

although the First Step itself is subdivided into two stages. The first stage (i) essentially 

concerns the optimization of the the inter-temporal consumption path with respect to 

, , …. The optimization with respect to CT is not carried out in the first stage 

in which CT itself is treated as a parameter. The first stage optimization is carried out 

by equating the marginal rate of substitution between  and  (for J ≥1) with 

1+r, treating CT as parameter. It is only in the second stage that CT is optimized. The 

optimum numerical value of CT is chosen as satisfying (I : 8), Hall’s Theorem.

These two stages, however, are indistinguishably connected in EUM. Further, 

because Hall’s method does not have the Second Step of CEM, it is by no means 

clear how Hall’s optimized consumption plan reflects the consumer’s risk preference. 

Apparently, the risk preference has been treated somewhere in the second stage, but 

it is not clear how the optimum saving-consumption plan under EUM reflects the risk 

preference. We find it difficult to understand the economic logic behind EUM.

(Hall’s Theorem as Compared with CEM)

Let us summarize some of the features of EUM, i.e., Hall’s Theorem (I : 8), 

comparing it with our method CEM.

Firstly, we note that the result of the First Step of CEM, i.e., the equation (I : 8)’, 

corresponds to the Euler equation in the Certainty case, requiring MRS between CT and 

 17 (to be denoted as MRS(T, T+1)) be equal to 1+r for optimum. The equation (I : 

8)’ is the uncertainty version of that relationship, obtained first by considering the Euler 

equation for each and every BT(i), and then by calculating the mean of all the states. 

The equation (I : 8)’ then presupposes that MRS(T, T+1)=1+r for each and every state 

of budget.

In contrast, Hall’s Theorem (I : 8) does not satisfy MRS(T, T+1)=1+r for each and 

every state of budget, because CT(i) under this theorem must satisfy the additional 

constraint (I : 9) irrespective of the state of budget. Because of this requirement, Hall’s 

theorem is not consistent with the condition MRS(T, T+1)=1+r for each and every state 

17	 If the utility function is specified as (I : 7), an additively separable function, then MRS between CT and  is 

defined as .
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of budget18.

Secondly, we note that the second stage of Hall’s method is carried out by searching 

a value of CT that maximizes the expected utility of the consumer. If, as Hall does, 

the additively separable NM utility function (I : 7) is employed as the optimization 

target, then EUM is consistent only with risk averting consumers. This is because 

Hall’s optimization in the first stage attempts to maximize the (expected) utility of the 

uncertain consumption path from period T+1 onwards, treating CT as parameter. This 

maximization requires u”(c)<0 as the second order condition for the interior maximum, 

which further implies that the risk-averting consumer is implicitly assumed19.

Summary of Part I

We now summarize the feature of our approach to the consumption choice under 

uncertainty.

We have shown in Part I that the consumption choice under uncertainty, given 

the distribution of the stochastic wage-income stream vector , should be solved by 

way of the following two steps: in the First Step, the consumer composes the optimum 

stochastic consumption demand vector  for each state of the stochastic wealth (BT) 

whose distribution endogenously derives from the distribution of the stochastic wage-

income vector . The optimization at this step is carried out with the “stochastic 

budget constraint (I : 3-3)' at each state” as the only constraint. The purpose of the First 

Step is simply to compose the optimum stochastic consumption plan vector  on the 

income-consumption line KK(r). For this optimization, only the preference ordering 

among possible consumption plan vectors has been utilized.

18	 If BT has only two states (a and b), and if we write Hall’s theorem alternatively in terms of MRS, we obtain : 
 	

 	 as the optimum condition, where MRS(T, T+1 : i) means the MRS between CT and  for each state of budget. 
This condition cannot be equivalent to 1+r=MRS unless MRS(T, T+1 : a)=MRS(T, T+1 : b). From the standpoint 
of CEM, then, it may not be able to regard Hall’s consumer as maximizing the welfare of intertemporal 
consumption plan.

19	 If the target function is additively separable as in (I : 7), then MRS(T+J, T+J+1)= . In order for the 
first stage interior maximum, it must be true that MRS is decressing, which requires, if the target function 
is additively separable, that u”(c)<0. It is probably in this context that the recent saving theory tends to put 
more emphasis on the magnitude of the third derivative of NM utility function to explain the saving. See 
Kimball[1990] in this context, and the concept of “prudence”. We think, however, that the relationship between 
risk preference and saving-consumption decision is more naturally explained by the second derivative of NM 
function, though the third derivative is not irrrelevant.
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The problem to be solved at the First Step is to compose (define) the optimum 

consumption as a stochastic variable, not to choose the best lottery among many 

lotteries. The latter problem is to be solved by maximizing the expected utility, but 

the First Step problem is not so. It is the usual preference ordering alone, not an NM 

function, that is needed in the First Step.

The NM utility function U is introduced only at the Second Step. Its role is to 

evaluate the expected NM utility of the optimum stochastic consumption plan vector 

* composed in the First Step. Because * has been already chosen in the former 

step, it is enough for the NM function to evaluate the consumption plan * alone, not 

the entire consumption plans over the consumption space. By evaluating the NM utility 

of *, and then using the CEM, we may choose the optimum consumption demand 

as a deterministic value (at period T). To be sure, this choice explicitly reflects the risk 

preference implied by the NM utility function.

Notice that the Second Step of our method can be equivalently carried out by 

introducing a single-variable NM utility function Z, which evaluates the NM utility of 

the uncertain budget BT(r). The intersection of the Certainty Equivalence Budget Line 

(i.e., (I : 3-3)'') with KK(r) determines the consumption function under uncertainty, 

generally expressed as : 

 ·  ·  ·  ·  ·  ·  ·  ·  ·        (I : 10).

(I : 10) is the deterministic consumption demand for period T under uncertainty, 

applicable to both risk averters and risk lovers. It shows explicitly the relationship 

between the risk preference and the consumption demand. Further, (I : 10) explicitly 

describes that the consumption demand under uncertainty should be empirically 

explained, in principle, by the variables that catch not only the first order moment (i.e., 

mean) but also the higher moments of the stochastic variable BT(r).

This completes the task of Part I, the fundamental assumption of which has been 

that the distribution of the stochastic wage-income stream vector ≡ ( , , …, 

, …), and therefore the stochastic distribution of the human capital, is given. We 

now would like to consider in Part II the time series behavior of the distribution of  

and its relationship to the time series behavior of the consumption demand. In contrast 

to Part I, we will deal with the consumption demand as a stochastic process, i.e., the 

20 成蹊大学経済学部論集　第46巻第2号   （2016年1月）



dynamic environment, in Part II.

Part II : Consumption Demand as a Stochastic Process

Introduction to Part II

The analysis of Part I has been restricted to the static environment in which the 

stochastic distribution of HT, the human capital at T, is given. In Part II, we deal with 

dynamic changes in the distribution of HT as T develops, in order to examine the 

consumption demand as a stochastic process.

Our consumption function in Part I has been derived rather differently from EUM, 

and therefore its stochastic process property, the martingale property in particular, needs 

to be reexamined comprehensively. In doing so, we are obliged to take a roundabout 

way, examining first how the consumer composes the subjective distribution of HT. 

Moreover, because the martingale property is generally defined in relation to a series of 

expanding σ-algebra, which in turn reflects the accumulation of available information, 

we must start our analysis by hypothesizing how the consumer revises the stochastic 

space over which HT is defined successively.

In what follows, we describe in general terms how the consumer successively 

revises the stochastic space (Section II-1) as well as the distribution of HT defined over 

that space (Section II-2). Only after these roundabout logical steps will it be possible to 

propose a refutable theoretical hypothesis under which the consumption demand as a 

stochastic process may possess the martingale property. We shall show, in Sections (II-

3) and (II-4), under what sufficient conditions the time series consumption data may 

show the martingale (or random walk) property. We shall show in particular that this 

property appears under more rigid restrictions than are usually recognized. In order 

for consumption to show this property, one must assume a risk neutral consumer with 

homothetic utility function (to be employed in the First Step optimization of Part I). 

Further, this result obtains in an informational environment, to be called the “Stochastic 

Perfect Foresight”.

II-1 : The Basics

The basic assumption is that the market wage–income ω is a stochastic variable 

the distribution of which is external to the economic behavior of each competitive 

consumer. The consumer is assumed to have no knowledge of ω's distribution, to be 
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called the “nature”. 

What the consumer at T does is to observe the current market wage-income ωT. 

After observing ωT (and other information which the consumer thinks relevant to the 

future wage path), the consumer subjectively composes the stochastic future path of 

the wage income. The consumer composes the variable ≡ ( , , …, , 

…) as a stochastic vector whose J-th element , (J ≥1) is the wage-income of period 

T+J20, as expected by the consumer in period T. The symbol T, appearing both as the 

subscript and the superscript of the variable , means that this stochastic variable is 

subjectively composed by the consumer at time T, the physical time. On the other hand, 

the symbol J(J=1, 2, …), appearing in the superscript T+J, means the future time T+J 

as conceived by the consumer at time T. The symbol T+J, given T, is not the physical 

time itself. We shall hereafter refer to the physical time T as the “vertical” time. On the 

other hand, we shall refer to T+J(given T) as the “horizontal” time. The distribution of 

ω, the “nature”, gives the time series data {ωT, ωT+1, …} along the “vertical” time to 

be observed successively by the consumer, who then revises the subjective stochastic 

vector  of the future wage income path defined along the “horizontal” time, i.e., the 

superscript T+J (J≥1).

Once the distribution of  is subjectively composed, the consumer may calculate 

the distributions of HT,  and , defined as (I : 2-1), (I : 2-2) and (I : 2-3). Notice 

that the superscript of  (as well as the superscript of ) refers to the horizontal 

time. From the distribution of HT, the consumer may calculate the distribution of BT 

defined as (I : 2-4).

According to our analysis in Part I, the deterministic consumption demand for 

period T is expressed as : 

CT = (r, )  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                          (II : 1)

≡Z-1 μ[Z(BT)] ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                         (II : 2), 

where Z is a von-Neumann-Morgenstern (NM) utility function that evaluates the NM 

utility of the uncertain variable BT. The consumption demand CT depends on the interest 

rate r and the “Certainty Equivalent Budget ”, which is dependent on BT.

20	 We assume, for simplicity, that  is discretely distributed with a finite number of occurrences.
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The distribution of BT, and therefore the numerical value of , change 

dynamically as the market wage income is observed by the consumer as ωT, ωT+1, …

etc. At time T+1, and given the information ωT+1(and other information available at 

T+1), the probability function(I : 1) is revised from fT( ) to fT+1( ), from which 

the distribution of HT+1 and BT+1 are recalculated. Consumption as a stochastic process 

reflects essentially the dynamic revision of the distribution of human capital, which 

itself reflects the additional information available at each period. In order to examine 

the consumption as a stochastic process, we must examine the relationship between the 

observation series ωT, ωT+1, …, and the dynamic revision of the distribution of human 

capital H (and that of B). We now address how H and B are revised successively as the 

vertical-time develops.

II-2 :	 Human capital as a stochastic process and the concept of “Stochastic 

Perfect Foresight”

At this stage, we must take a roundabout way and explicitly propose a behavioral 

hypothesis concerning how the consumer subjectively considers the “nature”, the 

distribution of the market wage-income ω, which successively occurs as {··, ωT, ωT+1, 

ωT+2, ··}. We assume that the consumer at the vertical time T observes ωT (and other 

relevant information available at T), and then composes the σ-algebra T. T may 

then be called “All the Information available at T.”21 The consumer then composes 

the subjective stochastic vector ≡ ( , , … , …) as T- measurable 

stochastic variables. Each component of , say , is a mapping from ωT to R 

(i.e., the real number). It is the consumer who determines the property of the mapping 

subjectively, using the information ωT(and other relevant information available at T).

This is what we hypothesize as the way how the stochastic vector  is composed. 

The distributions of , , HT and so forth are calculated from it. The consumer 

in period T regards the stochastic  as the subjective forecast of ωT+1, the wage-

income to be observed in the next period, T+1.

Needless to say, there is no presumption to regard the distribution  as 

21	 To compose T, the consumer must start by composing a partition ΩT of the sample space Ω. The consumer 
then composes the σ-algebra T as the smallest σ-algebra which contains the members of ΩT. For simplicity, we 
assume that ΩT is a finite partition of Ω. Because ΩT is composed by using the information available at time T, 
and because T is uniquely determined by ΩT, we may regard T itself as “All the Information available at T”.
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somewhat “close” to the distribution of ω, the “nature” to occur in the next period 

as ωT+1.  is a subjective distribution with several possible values to occur, while 

ωT+1 is the value to be observed only in period T+1. There is no strong reason for the 

distributions of ω and  to coincide. Further, although it might happen that one of 

the possible values for  to occur actually occurs as ωT+1, there is no presumption 

that such is always the case. After all,  is a statistical distribution composed 

subjectively by the consumer, and there is no guarantee that the distributions of ω and 

that of  are identical.

Be that as it may, when T+1 arrives, the consumer observes ωT+1as well as the 

other information available at T+1, and composes T+1. Then the stochastic variables 

, , …(as well as ) are composed as T+1- measurable stochastic variables. 

We assume that T T+1
22, and that the stochastic variable series { , , ….} is 

composed as adapted with the expanding σ-algebra series T T+1 …. Essentially, 

such are what we propose as the behavioral hypothesis of the consumer. 

Let us now consider, under this hypothesis, the property of the stochastic variable 

series {HT, HT+1, …}, which essentially determines the property of consumption as a 

stochastic process. The stochastic variable HT is defined by (I : 2-1) and (I : 2-2) as

 ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                     (II : 3),
 

which, given ωT (and other information available at T), is composed as T- measurable. 

In order to examine the property of HT as a stochastic process, we would like to know, 

essentially, the relationship between the two successive stochastic variables HT+1 and 

HT, namely;

 ·  ·  ·  ·    (II : 4).

The stochastic difference equation (II : 4) is not generally well-defined, because 

HT+1 and HT are defined over different σ-algebras. However, our behavioral hypothesis 

that T T+1 allows us to take the T- conditional expectation of (II : 4) to obtain : 

E[HT+1| T] -HT =rHT - (1+r) ωT -E[ηT+1| T] ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·           (II : 5), 23

22	 This assumption is justified by a more basic behavioral hypothesis according to which some (possibly all) 
components of ΩT is subdivided and included by ΩT+1, reflecting the arrival of the new information at T+1. In 
short, the partition of Ω becomes “finer and finer” as the vertical time proceeds and information accumulates.

23	 Notice that what we mean by the conditional expectation is the generalized one, the conditioning being with 
respect to the σ-algebra. It is the generalization of the conditional expectation in the elementary sense. The 
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where we define

ηT+1≡ηT+1(A)+ηT+1(B) ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·                      (II : 6), 

ηT+1(A)≡ (ωT+1 -E(  | T))=ωT+1 -  24(���������������������������� (II : 7)

 ·  ·  ·   (II : 8)25.

In these definitions, we note that ηT+1(A) ≡ωT+1-  is a stochastic variable well-

defined in period T+1, but not in period T because ωT+1 is yet to be observed in the 

future. Likewise, ηT+1(B)≡ [ - ] is not well defined in period T, because  

is composed after observing ωT+1. Further, because  and  are composed over 

different σ-algebras, the expression -  in (II : 4) is generally undefined. When 

this term appears in (II : 5), however, it appears as a well-defined conditional expectation 

E [ηT+1(B)| T].

Let us at this stage propose to define the concept of “Stochastic Perfect Foresight”, 

which will turn out in the next section to be one of the crucial conditions under which 

the consumption as a stochastic process may show the martingale property. We in 

particular propose to define “Stochastic Perfect Foresight” as a steady state in which (a) 

the stochastic spaces {Ω, T, PT} and {Ω, T+1, PT+1} coincide, and (b)  and  

are composed by the consumer as the stochastic variables with the same distribution 

over the same σ-algebra T = T+1, so that not only E[ηT+1(B)| T], but also ηT+1(B) itself 

is a stochastic variable the mean of which is zero (i.e., μ(ηT+1(B))=0)26.

difference between the conditional expectation in the elementary sense and that in the general sense is as follows. 
Consider stochastic variables x and y, jointly distributed with the probability f(x, y). The conditional probability 
of y|x(i.e., the x-conditional distribution of y) in the elementary sense is defined as f(x, y)/g(x), where g(x) is the 
marginal probability of x. In this elementary definition, the conditioning refers not with respect to the σ-algebra, 
but with respect to x. It is apparent that the literature concerning the consumption demand under uncertainty, as 
well as the literature concerning the rational expectation hypothesis in general, has been in most cases developed 
within the stochastic framework of the conditional expectation in the elementary sense. We use the conditioning 
in the general sense, for it is more natural to consider the consumption demand as a stochastic process within a 
framework of the changing (and expanding) σ-algebra.

24	 If a stochastic variable X is -measurable, then X=E[X| ] holds (For proof, see Cinlar[2010], p.144, Th.1.10, 
proposition a). The expression E( | T), included in the definition of ηT+1(A), may then be written simply as 

, for  is T-measurable.
25	 Because  is T+1-measurable, E( | T+1) = . Likewise, E( | T) =  because  is T- 

measurable.
26	 As noted above, we distinguish the symbol μ from the symbol E.
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We will show in the next section that BT, the stochastic budget, will have the 

martingale property under “Stochastic Perfect Foresight”, and that this property will 

be transmitted to the time series property of CT under several conditions including the 

risk neutrality of the consumer. Because the “Stochastic Perfect Foresight” concept 

is importantly related to the time series property of consumption, let us examine its 

implications in more detail.

The “Stochastic Perfect Foresight” concept has been defined above in association 

with the term ηT+1(B) = [ - ]. Assuming that the consumer is currently 

behaving under “Stochastic Perfect Foresight”, let us further examine its implications 

concerning the term ηT+1(A) ≡ωT+1- , the prediction error as a stochastic variable 

(at T+1).

What would happen if the consumer in period T+1 had regarded ωT+1(and the 

other information available in T+1) as “innovative” (i.e. “surprising”) in the sense 

that the observed ωT+1 was not included in the theoretically possible values of  to 

occur? The consumer would then have revised the stochastic space from{Ω, T, PT}to 

{Ω, T+1, PT+1}. Then, all the stochastic variables defined over that space would have 

been revised, so that  would have been differently distributed from .

The “Stochastic Perfect Foresight” has been defined as a situation under which no 

such revisions take place. It is then suggested that the market wage income ωT+1, as 

observed in period T+1, coincides with one of the theoretically possible values of the 

subjective stochastic variable  in the “Stochastic Perfect Foresight”.

We now propose to accept, as the inter-temporal (i.e., the “vertical-time”) 

behavioral hypothesis, that the consumer under Stochastic Perfect Foresight regards 

the observed value ωT+1 (and all the other information newly obtained at period T+1) 

as non-innovative, and composes the stochastic space {Ω, T+1, PT+1} exactly the same 

as the stochastic space {Ω, T, PT}. Then the consumer will compose  as the same 

stochastic variable ( T-measurable) as . The term ηT+1(B) will be a stochastic 

variable composed as the difference between the two T-measurable stochastic variables 

with the same distribution. The conditional-expectation relationship (II : 8) will of 

course hold, but the sigma-algebra remains the same as the vertical-time develops under 

the “Stochastic Perfect Foresight”. Moreover, the population mean of ηT+1(B) (to be 

written as μ(ηT+1(B))), will be zero in this case. We will make use of these properties to 

analyze in the next section the consumption demand as a stochastic process.
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Before proceeding to the next section, let us briefly note the conceptual distinction 

between the “Stochastic Perfect Foresight” and what is generally regarded as the 

“Rational Expectation (RE)”. The rational expectation (RE) should be defined as the 

case in which ω, the distribution of the market wage-income of the next period, and 

that of the stochastic variable ( ) coincide. Although the former is a stochastic 

distribution whose samples are successively observed along the “vertical” time, the 

latter is a (subjective) stochastic distribution defined over the “horizontal” time.

It is surely possible to think of a case in which the vertical and the horizontal 

distributions coincide; in order for the coincidence, however, we need more assumptions 

with respect to ω than we have hitherto made, as we will discuss below27. We assume 

no such coincidence in defining “Stochastic Perfect Foresight”. It is more plausible to 

regard RE as a special case of the Stochastic Perfect Foresight, in the sense that ω and 

 coincide28. In contrast, the two distributions do not coincide under “Stochastic 

Perfect Foresight”.29 It will be shown below that “Stochastic Perfect Foresight” is more 

relevant to the martingale property of the consumption time series.

II-3 : BT and CT as Stochastic Process

We have thus far taken a roundabout way to introduce explicitly the consumer’s 

behavioral hypothesis, i.e., how the distribution of HT(as well as BT) is revised along 

with informational accumulation as reflected by the successive revision of T. Further, 

we have introduced the concept of Stochastic Perfect Foresight, which will be shown as 

relevant to derive the consumption demand as a stochastic process.

Supposing that the dynamic development of the stochastic space {Ω, T, PT} has 

arrived at the “Stochastic Perfect Foresight”, and using CEM as developed in Part I, 

we shall now examine how the consumption demand {CT} develops as a stochastic 

27	 See (II : 14) below, as well as the footnote attached to it. At this stage, we assume simply that ω is a stochastic 
variable, nothing more.

28	 Hall, op.cit., as well as Flavin[1981], p.978, the eq.(6), apparently assume RE and consider that the term E 
[ηT+1| T] is zero under this hypothesis. It is certainly correct to consider E [ηT+1(B)| T]=0 under RE, for RE is a 
special case of the Stochastic Perfect Forecast.

 	 With respect to the term ηT+1(A)≡ωT+1- ), it is of course true under RE that E [ω- )]=0 (because the 
distributions of ω and  coincide under RE). However, ωT+1 as appearing in the definition of ηT+1(A) is the 
observed value of ω, and ω is a stochastic distribution. Hall’s claim above, as long the term ηT+1(A)≡  ωT+1-  
is concerned, is unjustified.

29	 This means that the prediction error, ηT+1(A)≡  ωT+1- , will not cancel out on the average under “Stochastic 
Perfect Foresight”.
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process. We will show that the stochastic process {CT} may possibly show the 

martingale property under the following set (a)~(c) of conditions : (a) the consumer is 

risk neutral; (b) and the utility function to be employed in the First Step of the CEM 

method is homothetic; and c)the consumer behaves in the Stochastic Perfect Foresight.

To our knowledge, the relationship between the risk preference and the property of the 

consumption time series has not been duly recognized by the literature.

Consider (II : 1), the consumption function under uncertainty (notice that the 

interest rate r is given as constant). It shows that the time series behavior of CT is 

determined exclusively by the time series behavior of the Certainty Equivalent Budget 

, which further is exclusively determined by the time series behavior of BT. We will 

therefore focus on the series of stochastic variables {BT, BT+1, BT+2, …}. We will first 

show that BT as a stochastic process will show the martingale property in the Stochastic 

Perfect Foresight. We will next discuss the relationship between the consumption 

demand CT as a stochastic process and BT as a stochastic process.

Let us examine the property of BT (=HT+(1+r)NT-1) as a stochastic process. Using 

(II : 3) as well as the flow identity NT -NT-1 ≡ r NT-1+ ωT -CT, we obtain : 

Suppose the consumer is currently in the Stochastic Perfect Foresight in which 

the stochastic space composed by the consumer remains the same. Then, as discussed 

above,  and  are identically distributed over the same σ-algebra, so that the 

term [ - ] drops. We may therefore conclude that BT+1-(1+r)BT is distributed 

in the Stochastic Perfect Foresight as satisfying : 

BT+1 - (1+r)BT =[ωT+1 - ] - (1+r)CT  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (II : 9a).

Substituting the consumption function (II : 1) into (II : 9a), and using (II : 2), the inter-

temporal behavior of BT in the Stochastic Perfect Foresight is expressed as : 

BT+1 -BT =rBT+[ωT+1 - ] - (1+r) · (r, Z-1 μ[Z(BT)])  ·   ·   ·   ·  (II : 9b).

Let us now examine (II : 9b). From the standpoint of period T+1, all the RHS 

variables, apart from ωT+1, are predetermined variables the distribution of which has 
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been composed by using the information available in the former period (i.e., period T). 

If, therefore, the market wage ω is stochastically distributed with ω =μω+ε, μ(ε) =0, 

generating successively the observed time series data {··ωT, ωT+1, ··} along the “vertical” 

time, then the stochastic process of BT itself (along the “vertical” time) is a martingale, 

apart from trend. If, moreover, if ε is i.i.d., then BT follows a random walk with trend.

Now that the property of BT in the Stochastic Perfect Foresight is shown as a 

martingale with trend, we now turn to the Consumption demand as a stochastic process.

Consider once again the consumption function : 

CT = (r, Z-1 μ[Z(BT)]).

The consumption function, mathematically, is a transform from BT, a stochastic variable, 

to CT, the deterministic consumption demand. It is in fact composed by two transforms, 

first from the stochastic BT to its certainty equivalence Z-1 μ[Z(BT)], and then from Z-1 

μ[Z(BT)] to the deterministic CT through the consumption function . Presumably, 

then, the martingale property of BT will be transmitted to CT in the Stochastic Perfect 

Foresight, if the two transforms are both linear. Let us see if this conjecture is justified.

It is evident that a) if Z is linear (a risk neutral consumer), the transform Z-1 

μZ=Z-1Zμ=μ, and μ itself is a linear transform. Further, b) if the utility function to be 

employed in the First Step of the Certainty Equivalence Method as developed in Part 

I is homothetic, then the income-consumption curve for the given interest rate r is a 

straight line that passes the origin. In such a case, the level of budget and the level of 

consumption is proportionate, making the consumption function linear with respect to 

budget BT.

Let us therefore assume a risk neutral consumer who maximizes, in the First Step of 

CEM, the homothetic preference ordering implied by

G=(CT)α + (CT
T+J)α (1+δ)-J   (0<α<1) ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  (II : 10a)30.

30	 Because 0<α<1, it is possible to interpret the function G, an additively separable function, as a cardinal (von 
Neumann-Morgenstern type) utility function representing a risk averse consumer. It might be conjectured then 
that this consumer must be treated as a risk averter, not as risk neutral. In Part I of this paper, however, we 
have shown that this conjecture is not a logical necessity. To assume that the consumer’s preference ordering 
is expressed by the function G in the “First Step optimization”, and then to assume that this consumer is risk 
neutral in the “Second Step”, is completely compatible. By the nature of our “First Step optimization”, the risk 
preference information, which might have been included in the function G, does not affect the result of the First 
Step.
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We now examine if the consumption demand of such a consumer follows a martingale 

under “Stochastic Perfect Foresight”.

Assuming (II : 10a), and making use of CEM, we first note that if the consumer is 

risk neutral, the consumption demand is : 

CT =k(r)[μ(BT)] ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (II : 10b)31.

This consumption function is composed by two linear transforms from BT to CT, i.e., 

BT⇒μ(BT)⇒k(r)μ(BT).

Given the consumption function (II : 10b), we know from (II : 9a) that BT 

dynamically behaves in the Stochastic Perfect Foresight, satisfying : 

BT+1 -BT =rBT+[ωT+1 - ] - (1+r)k(r)μ(BT)

= rBT+[ωT+1 - ] - (1+r)CT ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·             (II : 11).

Notice that (II : 11) is meaningful only in period T+1 after the market wage ω has 

actually occurred as ωT+1. Otherwise the stochastic variable BT+1 does not exist, because 

BT+1 (which by definition includes HT+1) is a distribution composed by using ωT+1 as 

(one of the) information available then. We now operate μ over (II : 11) as the operator 

to take the mean, as of T+1, of the stochastic variables. Because ωT+1 is an observed 

value as of T+1, μ(ωT+1)=ωT+1, and because μ(CT)=CT (i.e., CT as determined by (II : 

10b) is a deterministic value), this operation results in : 

μ(BT+1) -μ(BT)= rμ(BT)+[ωT+1 -μ( )] - (1+r)CT ·   ·   ·   ·   ·   ·   ·  (II : 12).

Substituting (II : 10b) into μ(BT+1) and μ(BT), and rearranging the terms, we obtain : 

CT+1 -CT =(r- (1+r)k(r))CT+k(r)[ωT+1 -μ( )] ·  ·  ·  ·  ·  ·  ·  ·  ·        (II : 13)

in “Stochastic Perfect Foresight”.

Defining θT ≡μω -μ( ), and assuming that the market wage ω is stochastically 

distributed with ω=μω+ε, μ(ε)=0, generating successively the observed time series data 

{··ωT, ωT+1, ··} along the “vertical” time, (II : 13) is equivalently written as :

CT+1 -CT =(r- (1+r) k(r))CT+k(r) θT+k(r)εT+1 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (II : 14)32, 

31	 k(r) is defined as k(r) ≡ 1+r-m , where m ≡ ( ) , and notice that =mJCT (J ≥1). Further, in order for the 
consumption function (II : 10b) to be meaningful, both the discounted utility sum and the present value of the 
consumption must converge. For convergence, it must be true that 0<(1+r)α<1+δ, (0<α<1), a condition which we 
now assume satisfied. This condition implies 0<m<1+r and 0<k(r)<1.

32	 When one estimates the equation (II : 14), there is no strict reason to assume that θT ≡μω-μ( ) =0 (i.e., 
μω =μ( )). The assumptions we have imposed so far are not sufficient to assume that θT ≡μω-μ( )=0. If 
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The equation (II : 14) applies to the risk neutral consumer with the homothetic 

preference ordering, behaving in the “Stochastic Perfect Forecast.”. It shows that the 

consumption demand CT+1, apart from the predetermined trend term (r-(1+r)k(r)) 

CT+k(r) θT, is equal to the sum of CT and k(r) εT+1, the latter term having been generated 

as the time series random term with mean zero. We will then be able to conclude that 

the consumption demand of this case shows the martingale property, apart from trend.

Notice the reason why the consumption time series shows the martingale property. 

One of the crucial reasons is the fact that (II : 12) includes ωT+1 as the contemporaneous 

external stochastic force to change the mean of B from μ(BT) to μ(BT+1). Another 

crucial reason is that C (the deterministic consumption derived by CEM) becomes the 

linear mapping from the mean of the distribution of budget (i.e., μ(B)) because the 

consumer is risk neutral with homothetic preference ordering. In this case, the effect 

of ωT+1, included both in (II : 11) and (II : 12), is proportionally transmitted to C, the 

consumption.

II-4 : (Summary and Conclusion)

The equation (II : 14) is a statistically refutable hypothesis based on which it is 

possible to judge whether the stochastic consumption process {CT}, apart from trend, 

is a martingale. The sum of the first two terms of the RHS of (II : 14) is the trend of 

{CT} under “Stochastic Perfect Foresight”. If this specification statistically explains the 

time series consumption data reasonably well, we may conclude that {CT} is in fact a 

martingale. 

Notice, however, that the hypothesis (II : 14) is composed by assumptions including 

(a) a risk neutral consumer, (b) “Stochastic Perfect Foresight”, (c) ω (i.e., “nature”) is 

one assumes additionally that the market wage income is distributed i.i.d., and that the consumer uses the sample 

mean of the past observations of ω as the mean of the stochastic variable , then the strong law of large 
numbers will suggest that it would be possible to assume μω-μ( )=0 in the long run. Under this strengthened 
assumption, (II : 14) is a theoretically refutable hypothesis to test whether the consumption obeys a random walk 
apart from the trend (r-(1+r) k(r)) CT. It is in this case that we may assume the coincidence of ω, the “nature”, 

and the subjective distribution , as far as the first order moment is concerned, and we may call such a state 
as “rational expectation (RE)”.

 	 Because μ( ) is a value composed by each consumer using all the information available by T, we could 
approximate θT by a function of all such information including ωT, ωT-1, ωT-2, … etc. Not only the wage income 
but also other relevant variables could be tested as explanatory variables of θT. In estimating (II : 14) to examine 
the martingale property of consumption, there is a great degree of freedom for possible choice of the explanatory 
variables.
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distributed as stochastic with the constant population mean μω, and (d) the homothetic 

preference ordering implied by (II : 10a). If these assumptions are satisf ied, the 

consumption time series will theoretically show the martingale property as (II : 14) 

implies.

What can one say generally about the property of the consumption stochastic 

process? We have shown above that the risk neutrality, among others, is one of the 

sufficient conditions for the time series consumption data to exhibit the martingale (or 

random walk) property. Even with the homothetic preference ordering (II : 10a), the 

consumption function of a non-risk-neutral consumer is : 

CT =k(r)[ ], ≡Z-1 μZ[BT],

where the transform Z-1μ Z is non-linear. The dynamics of C in this case is not so 

simple as (II : 14). Even if BT is a martingale in the Stochastic Perfect Foresight, the 

consumption path depends non-linearly on BT, making the analysis of the time series 

consumption path apparently intractable. We are not certain if the consumption time 

series may show the martingale property in the risk non-neutrality case.

Apart from the risk neutrality, what is also essential is that the economy is under 

the Stochastic Perfect Foresight, and that the utility function is homothetic. Under these 

conditions the time series consumption process will show the martingale property apart 

from trend.

What we have discussed by this paper has to do with the sufficient conditions, not 

the necessary ones, under which the consumption time series may become martingale; 

we are well aware that this fact limits the scope of this paper. However, it is our 

understanding that many empirical studies about the subject of this paper have mainly 

dealt with possibilities such as the liquidity constraint, credit limits and so forth to 

explain the reason why the data do not apparently support the random walk-martingale 

hypothesis. This paper suggests, however, that the specification of the consumption 

function, including the risk preference, must also be thoroughly reexamined along with 

the possible market anomalies such as the liquidity constraint.

There are further implications of the analysis developed by this paper. In 

particular, our analysis has only dealt with the case where the interest rate variable (r) 

is deterministic. It is desirable then to extend the analysis to include the case in which 

r and  are jointly distributed. We have dealt with this issue in a separate paper (see 
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Mutoh–Tanaka[2015], Section 5). It is suggested there that the certainty equivalence 

concept is useful in resolving the missing equation difficulty of macroeconomic models.

(Tanaka, Former Specially Appointed Professor, Faculty of Economics, Seikei University

Mutoh, Professor, Faculty of Economics, Seikei University)
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