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Worst case bounds on facial reduction for conic programming
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ABSTRACT : Conic linear programming is a powerful modelling technique with many applications in 

engineering, planning, statistics and many others. Typically, a conic linear program (CLP) is expressed as 

the task of minimizing some linear function subject to linear equations and conic constraints. Sometimes, 

however, the CLPs can exhibit nasty theoretical behavior. This is where regularization techniques come to 

play. They fix ill-behaved problems and put them in a shape that solvers can successfully handle them. In 

this note, we present a brief account of Facial Reduction Algorithms and discuss worst case bounds for their 

termination.
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1. Introduction

A conic linear program (CLP) corresponds to the following 

optimization problem: 

minimize cTx (P) 

             subject to Ax = b 

x E K, 

where A is a m x n real matrix, b E ~Rm, c E 9111 and 

K is a closed convex cone. By a "convex cone", we mean any 

subset of 9in such that for all x, y E K, a, /3 E 91 we have 

ax + [3y E K. The "closed" part just means that K is closed 

as set of 9in in the usual Euclidean topology. 

Depending on the set K, we get different types of problems. 

For instance, when K is the nonnegative orthant 9I+ = 

{x E 9111 I x1 >_ 0, Vi), we have Linear Programming (LP). 

When K is the set of n x n positive semidefinite symmetric 

matrices, we have Semidefinite Programming (SDP). 

Numerous applications of SDPs can be seen, for instance, in 

the survey by Todd [1]. 

                Typically, a CLP is solved through the so-called interior 

point methods (IPMs) [2], which are algorithms that that have
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been developed in the 90s and continue to be actively 

researched. 

For an IPM to succeeded in solving (P), it is typically 

required that some special conditions be satisfied. In order to 

explain them, we need to introduce the dual problem. Recall 

that (P) is called the primal problem and its dual counterpart 

is the following optimization problem: 

             maximize bTy (D) 

              subject to c — ATy E K*, 

where K* = {z E I zT x >_ 0, Vx E K) is the so-called 

dual cone of K and AT denotes the adjoint of A. 

Let Op, OD denote the optimal values of (P) and (D) 

respectively, where it is understood that O = —00 if 

(P) is unbounded and O = +00 if (P) is infeasible, that is, it 

admits no feasible solution. Similarly, OD = +00 if (D) is 

unbounded and OD = —00 if (D) is infeasible. 

Note that in this general context, even if Op is finite we cannot 

take for granted the existence of a primal optimal solution. The 

same remark holds for (D). 

 With this notation, the weak duality theorem states that we 

always have Op >— O. When, in fact, we have Op = OD, we 

say that the duality gap is zero. From both theoretical and 

practical perspectives, it is desirable that a problem has zero 

duality gap, but unfortunately that is not always the case. In 

contrast to what happens in Linear Programming, we cannot 

take zero duality gap for granted. 

 For IPMs to work it is usually assumed that both (P) and (D)
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have what is called relative interior feasible solutions. First of 

 all, denote by span (K) the smallest subspace that contains K. 

Then, the relative interior of ri(K) is the topological interior 

of K in the Euclidean topology induced by span(K). That is: 

ri(K) = {x E K I 3 an open set U S 9in such that x E 

U and UnKSspan(K)}. 

 More details on the properties of the relative interior and a 

general discussion on convex analysis can be seen in the 

classical book by Rockafellar [3]. 

A primal relative interior feasible solution is some vector x 

satisfying the constraints in (P) and also satisfying x E ri(K). 

When such a x exists, we say that Slater 's condition is satisfied 

for (P) or that (P) is strongly feasible. Similarly, a dual relative 

interior feasible solution is some y satisfying the constraints in 

(D) such that c — ATy E ri(K*). When such an y exists, we 

say that (D) is strongly feasible or that the Slater 's condition is 

satisfied for (D). 

 Then, the strong duality theorem for conic programs states 

that if both (P) and (D) are strongly feasible, then we have 

Op = OD and there are both primal and dual optimal solutions. 

 Unfortunately, as we remarked before, not all problems are 

strongly feasible. And this can cause a series of theoretical and 

practical problems [4] [5]. For instance, a solver might 

converge to a wrong answer or it might mislabel an infeasible 

problem as feasible. 

 This is where Facial Reduction Algorithms (FRA) comes 

into play. FRAs aim at reformulating (P) in such a way that 

strong feasibility is satisfied for (P). This is accomplished by 

finding a smaller part of K that still contains all the feasible 

solutions of (P). Then, a new but equivalent problem (P*) is 

obtained that has better theoretical properties and is more likely 

to be solved correctly by existing methods. Then, if necessary, 

we can also apply FRA to the corresponding dual problem of 

(P*) to fully regularize the problem.

2. Facial Reduction

Facial reduction was developed by Borwein and Wolkowicz [6] 

in the 80s for very general conic convex programs. However, it 

took some time before it became widely studied. It was in fact 

with the advent of CLPs and IPMs that researchers started to 

pay attention to it. Modem descriptions of the technique can be 

found in the work by Pataki [7] and also in the work by Waki 

and Muramatsu [8]. We will now present a brief overview of 

the technique.

Let V = {x E 9in I Ax = b). Note that V is an affine set, 

which, as we recall, simply means that it is some subspace of 

91" translated by some vector. Note that (P) is not strongly 

feasible (i.e., (P) does not satisfy Slater's condition) if and only 

if V n ri(K) = 0. In this case, because V is an affine set and 

K is, in particular, a convex set, by invoking one of the many 

separation theorems that exist [3], we can find some hyperplane 

H such that V and K belong to opposite half-spaces defined 

by H. Let us explain more precisely the meaning of that. First, 

since H is a hyperplane there are d E 9i', a E 91 such that 

H = {x E 9V' I xT d = a). Then, H divides the whole space 

in two half-spaces H+ = {x E i." I xTd >_ a) and H = 

{x E9in I xTd <_ a). The statement that V and K belong to 

opposite half-spaces is the same as saying that, for instance, 

VSH-,KSH+. 

The statement that V S H-, K S H+ does not exclude the 

possibility that V S H, K S H, which is not very interesting 

since it does not give us much information about the relation 

between V and K. Still, due to some technicalities, we can in 

fact ensure that they are not both contained in H at the same 

time. Then, exploring the properties of V and K, we can 

always assume that a = 0 and after some technical arguments 

we are left with two possibilities: 

1. VSH, K g H and d E K*. (See Figure 1 below). 

2. V n H = 0 and d E K*, which implies that (P) is 

infeasible, since V S H-, K S H+ 

z

Figure 1 — In this picture we can see a piece of the cone K 

(grey). In our context, a cone is an object that extend infinitely 

in the directions it contains, so this only shows a part of it. We 

see that V (blue) intersects K at the boundary only, so there 

are no relative interior points. Because of that, we can find the 

hyperplane H, which contains V but not K. In this case, 

 KSH+.
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If 2. holds, we stop. Note that if 1. holds, it is not necessarily 

the case (P) is feasible, we simply do not know this information 

 at this point. Nevertheless, if 1. holds, we let F = K n H. Then, 
F has a few special properties: 

1. F is a face of K. 
2. F contains all feasible solutions of (P). 

3. F is strictly smaller than K, that is F g K. Not only 
that, but the dimension of F is smaller. 

A face of K is a convex cone F contained in K with the 

property that x, y E K and x + y E F imply that x, y E F F. 
For many useful cones, we can describe its faces in a rather 
complete and comprehensive manner. 

 Property 2. ensures that if we substitute K for F in (P) we 

will get an equivalent problem in the sense that all feasible 
solutions will stay the same. In addition, the optimal value and 

optimal solutions will not change. However, since F is smaller 
than K, the corresponding dual problem can gain new feasible 

solutions, since F* is potentially larger than K*. So consider 
the following new problem 

           minimize cTx (P1) 
            subject to Ax = b 

                  x E F. 
If (P1) is strongly feasible, then we are done. Otherwise, by 

the same principle, we can find some hyperplane H2 that 

separates F and V and either find out that that the problem is, 
in fact, infeasible or find a smaller face of F that contains all 

feasible solutions to (P). 
 This is the essence behind facial reduction. As long as the 

problem is not strongly infeasible we can keep replacing the 
cones by smaller and smaller faces. Property 3 listed above 

ensures that this process will eventually come to an end since 
the dimension of the faces is getting smaller and smaller. 

 In fact, it can be shown that this process ends at the so-called 
minimal face of (P), which is defined as the smallest face of K 

that contains all the feasible solutions of (P). We denote the 

minimal face by F,Pnin. We can then state a FRA algorithm as 
follows. 

Algorithm 1 - Facial Reduction 

Input: (P) 
Output: F nin. (F in = 0 if (P) is infeasible) 
1 If K is strongly feasible, let FPin K and stop. 

2 If K is not strongly infeasible let H = tx E 9 n I xTd = 

0) be a hyperplane such that V g H-, K S H+ together 

   with either: 

A) V S H, K H, or

B) VnH=0, 

3 If A) holds, we let K - K n H and return to 1. If B) 

   holds, we let F,P,,in <— 0 and stop. 

After applying Facial Reduction, wefinally obtain the 

following regularized version of (P). 

minimize cTx (P*) 

subject to Ax = b 

                  xEFmPin, 

If is is not empty, it can be shown that the problem (P*) 

has the following properties: it is strongly feasible and given 

some x E 9in we have that x is feasible for (P) if and only if 

it is feasible for (P*). In particular, we have Op = Op*.

3. Worst case bounds.

The facial reduction algorithm (FRA) starts at the original cone 

K and progresses to the minimal face Fr%in. More precisely, 
the algorithm produces a chain of faces F1 F2 

such that F1 = K and Ff = F,Pnin• 
 From a computational point of view, FRA is expensive 

because the hyperplanes in Step 2 must be found by solving 

auxiliary conic linear programs. Fortunately, these auxiliary 
CLPs have nice theoretical properties so they do not suffer from 

the same ill-behavior that (P) might have, no matter how 

unfavorable the theoretical properties of (P) are. 
 Still, if possible, we would like to solve as few auxiliary 

CLPs as possible since our major goal is to solve (P). So, 
usually, we measure the performance of FRA by the number of 

hyperplanes H found throughout the algorithm. The length of 
the chain of faces F1 F2 ... Ft is defined to be I'. With 

that, the number of hyperplanes found is - 1. 
 Note that the hyperplane H in Step 2 is not unique so for 

fixed K, A, b, we have some degree of freedom in the choice of 
H. A good H that cuts deep into the boundary of K will 

produce a smaller chain of faces, which is desirable. A bad H 
that produces a shallow cut only enough to ensure K H and 
nothing more is more likely to induce a long chain of faces. 

 We define the singularity degree of (P) as the minimal 

number of hyperplanes needed to ensure that Ft = Fmin• 
The singularity degree of (P) is denoted by d(P) and is a well-
defined quantity. 

 It is natural to consider how large can d(P) be. In fact, it is 

possible to show that there is a bound for d(P) that does not 
depend on A or b. Namely, we always have 

d(P) e — 1, (1)
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 where -eK denotes the longest chain strict descending chain of 

faces of K. 

As K is contained in the finite dimensional space 91n, it 

also has finite dimension. In addition, if F K is a face of K 

then it must have dimension strictly smaller than K. Therefore, 

eK is finite, which tells us, in particular, that there is no risk of 

Facial Reduction running forever. 

  Recently, we noticed that the bound (1) is not very tight. That 

is, for fixed K, the difference between the worst possible d(P) 

and the quantity -eK — 1 can be very large. 

  In [9] we proved a better bound for d(P), which we now 

describe briefly. The motivation for it came from observing 

what happens when the cone K is polyhedral. We recall that a 

set is said to be polyhedral if it can be described as the set of 

solutions of a finite number of linear equations and linear 

inequalities. In particular, all affine sets are polyhedral but the 

converse does not hold. 

  When K is polyhedral, although it can have a very long 

chain of faces, it is possible to show that d(P) is at most one. 

This stems from the Goldman-Tucker Theorem for Linear 

Programming, which asserts the existence of the so-called strict 

complementary optimal solutions for LPs. 

  So the first observation is that when we are doing Facial 

Reduction as soon as we reach some polyhedral face, we can 

jump straight to Fn This This gives the bound 
d(P) <_ 1 + -epoiy(K), (2) 

where 4o1y(K) is the length minus one of the longest chain 

of faces of K that starts with K and descends to a polyhedral 

face in such a way that all intermediate faces are nonpolyhedral. 

We call 401y (K) the distance to polyhedrality of K. 

  The inequality (2) is already an improvement over (1), but it 
is possible to be sharper. For many problems, the cone K is 

actually a direct product of other cones. That is, 

K=K1x...XKr, (3) 
where the Ki are themselves closed convex cones. In this case, 

all faces of K are also direct products of faces of the K'. That 
is, if F is a face of K then 

F=F1x...xFr (3) 

where for all i, we have that F' is a face of K'. Now, 
suppose that F is a face obtained in the intermediate steps of 
Algorithm 1. Under these circumstances, we proved in [9] that 

the following condition is enough to jump to Fmin• If for every 
i, we have either 

   A) F` = (Fmin)' or 

B) F' is polyhedral,

then there exists a hyperplane H as in Step 2 of Algorithm 1 

such that Fmin = F fl H. In other words, if an intermediate 
face is such that either a block is polyhedral or is already a part 

of the minimal face, then it is possible to jump to the minimal 

face Fminin a single step. In the end, we get the following 
bound 

d(P) < 1 + I fpoly (K`). (4) 
i=1 

Also in [9] we show that the quantity 1 + ~i ~po1y(K0 
is strictly smaller than f — 1 if we have the product of at 

least two cones that are not subspaces. In other words, not only 

the bound (4) is not worse than (1) but in most practical cases, 

it is strictly better. 

 In fact, as far as we know, the bound in (4) is the best general 

bound available depending only on K. But, of course, there is 

no guarantee that the Algorithm 1, as we stated in this paper, 

will not end up finding more directions before reaching the 

minimal face. To account for that, in [9] we show how to design 

a facial reduction algorithm that is guaranteed to not perform 

worse than the bound in (4). This includes a detailed on 

discussion on how to find good hyperplanes through auxiliary 

conic linear programs.

4. Conclusion

In this paper, we presented an overview of facial reduction 

together with a discussion of worst case bounds. There are 

many interesting topics connected to facial reduction that we 

did not mention. For instance, Facial Reduction can be used to 

give generalized versions of the classical Farkas' Lemma that 

appears in Linear Programming [10] [11]. It is also a tool for 

obtaining the so-called "extended duals" which are substitutes 

for (D) that do not suffer from the same theoretical issues [12] 

[13] [7]. 

 Moreover, FRAs can be used to study several different types 

of ill-behavior in CLPs such as weak infeasibility and 

unattained optimal values [14] [15] [16] [17]. There are also 

recent works discussing practical issues in the the 

implementation of facial reduction software [18] [19].
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