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1: Introduction

One of the theoretical targets of uncertainty economics is to offer a framework 

according to which the value of the choice variable is selected by agent as deterministic. 

Thus the demand for securities as risky asset and the money stock as safe asset are 

both deterministically chosen by the agent in the portfolio choice theory. Similarly, the 

theoretical target of the intertemporal consumption choice model, when the market 

price variables (interest rate) and the budget (human capital + non-human capital) 

constraint are both uncertain, is to derive the current period consumption demand C1 

(and, presumably, the intertemporal consumption path as well) as a deterministic value, 

conditional on the currently available information. 

The well-known standard approach to this problem (Hall[1978], Selden[1978, 

79] ) has employed PIH (permanent income hypothesis) as a common theoretical 

framework, and this paper follows the same line in this respect. The standard approach, 

however, has employed another common theoretical framework, namely that the current 

period consumption C1 as an optimization target is non-stochastic but that the future 

consumption (C2, C3, etc.) is stochastic. The importance as well as restrictiveness of this 

“Asymmetry Postulate” (AP) does not seem to be fully recognized. 

Selden, op.cit. is most explicit in adopting AP by assuming (a) that C1 is certain 

and C2 is uncertain so that (C1, C2) is “Certain-Uncertain Pairs”, and that a preference 

ordering exists between these pairs1. Further, (b) “Risk Preference Independence2” is 

assumed so that the risk preference with respect to the uncertain C2 is independent 

of the certain C1. Concerning both (a) and (b), C1 and C2 are explicitly postulated as 

asymmetric variables. These assumptions concern C1 and C2 interpreted as optimizing 

1	 Kreps-Porteus[1978], also assuming “Certain-Uncertain Pairs”, uses a common framework with Selden. Epstein-
Zin[1989] apparently follows the same line. We note in passing that our approach belongs to what Kreps-Porteus, 
op.cit.,p.185-187 called “payoff approach”, which is more restricted than Kreps-Porteus.

2	 Selden, op.cit., p.1053.
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objectives: in other words, these assumptions logically precede the optimum choice 

behavior itself. 

In contrast, Hall, op. cit. is not very explicit in adopting AP. However, we will show 

(see Section 5) that Hall’s consumer is interpreted as maximizing the expected utility 

of consumption path not only under the budget constraint (stochastic) but also under 

an implicit constraint requiring C1 be constant under any stochastic occurrence of the 

budget. Therefore, his model also adopts AP and virtually treats (C1, C2) as “Certain-

Uncertain Pairs”. 

It is the consequence of AP that the standard approach is able to choose the optimum 

consumption path, the optimum C1 in particular, as deterministic. The AP framework, 

however, is open to doubt, once we recognize that formally the same framework must 

be similarly applicable to any non-intertemporal consumption choice problem in which 

the price variables and the budget variable are uncertain. After all, the subscripts of C1 

and C2 may well express not the time period but specific goods (say, apple and orange). 

It is questionable if one may plausibly adopt AP in this general case and assume that 

the demand for apple is non-stochastic but that for orange is stochastic. We must ask 

ourselves if there is another approach to solve the intertemporal consumption choice 

under uncertainty without adopting AP: this is the main purpose of this paper. 

The intertemporal consumption choice under uncertainty is an optimization problem 

when the price and the budget variables, to be called “Source Uncertainty (SU)”, are 

jointly distributed, generating many potential budget constraints. This article will assume 

that the consumer will optimize with respect to each and every stochastically possible 

occurrence (i.e., “state”) of SU. This itself, which we shall hereafter call “Statewise 

Optimum (SO)” hypothesis, is a reasonably natural extension of the optimization under 

certainty. Adopting this hypothesis, the optimum consumption vector (C1
*, C2

*, C3
*, …), 

corresponding to each “state” of SU (i.e., each state of the budget line), will itself be 

stochastic. Then, there is no asymmetry between C1
* and C2

*, C3
*, …, because all the C*'s 

are stochastic, in contrast to the standard approach adopting AP.

Adopting SO as the main behavioral hypothesis of the consumer, we now intend to 

reexamine the intertemporal consumption choice under uncertainty. All of the “Statewise 

Optimum” consumption plans will be symmetrically treated as stochastic. As we shall 
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see, however, SO alone is insufficient to choose the optimum consumption plan (C1
* in 

particular) deterministically and uniquely. For this purpose, one must further consider 

the following two points.

First, the risk preference must be taken into consideration3. We shall introduce 

Neumann-Morgenstern (NM) risk preference function and derive the optimum 

consumption demand by making use of certainty equivalence. As will be shown later, 

however, this alone is not yet sufficient to choose a deterministic optimum consumption 

uniquely, for the introduction of risk preference may only select a group of statewise-

optimized certainty equivalent consumption plans with identical preference ordering. 

Secondly then, we must introduce an auxiliary hypothesis as a new postulate 

in order to choose the optimum consumption uniquely. Our new postulate, which 

substitutes AP, will be introduced in detail in Section 4 but is broadly stated for now as 

follows: Out of the group of statewise-optimized certainty equivalent consumption plans 

with identical preference ordering, it is the “mean” of them that is finally chosen as a 

unique and deterministic consumption plan. 

In what follows, Section 2 develops SO, the Statewise Optimization. Section 3 then 

introduces risk preference and certainty equivalence, and explains what is meant by “a 

group of optimized certainty equivalent consumption plans with identical preference 

ordering”. Section 4 introduces our new postulate and explains what is meant by the 

“mean” of this group. Section 5 compares our approach with the standard approach. 

Our approach, treating all the C’s symmetrically, may be applied not only to the 

intertemporal consumption choice but also generally to the consumption choice under 

uncertainty when SU is given as jointly distributed. Further, although intertemporal 

consumption choice articles have often treated either the price variables (interest rate) 

or the budget variable as stochastic, this paper treats both variables simultaneously as 

uncertain. Still further, our approach seems simpler than Selden who postulated “Risk 

Preference Independence” and “Preference Ordering over Certain-Uncertain Pairs”, 

which themselves seem rather complicated. Our approach may solve the intertemporal 

3	 Hall (implicitly) and Selden (explicitly) take the risk preference into consideration. Hall uses a (cardinal) 
preference ordering which simultaneously works as an NM function.
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consumption choice problem without them, and, as will be seen, the extension to more 

than 2 period model is straightforward. 

2: Source Uncertainty SU and Statewise Optimization SO

(Source Uncertainty SU)

In what follows, we shall mainly deal with the two period model unless explicitly 

stated otherwise. Under PIH, the consumer chooses the optimum intertemporal 

consumption path which satisfies:

Max V(C1, C2) ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (1)

s.t.B=C1 + C2

r
 ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (2),

where r is the competitive market interest rate from period 1 to 2. B (≡H+N) is 

the wealth, composed by the human capital H and the financial asset N, both at the 

beginning of period 1. The human capital is defined as:

H≡W1+
W2

r  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (3),

where W1,W2 (both assumed as stochastic) are the wage income of each period. 

If no uncertainty exists, an optimum consumption path (C1
*, C2

*), corresponding to a 

deterministic pair (r, B) and satisfying (1) and (2), will be chosen. Under uncertainty, in 

contrast, the consumer subjectively thinks that r and B are jointly distributed. The joint 

distribution (r, B) is our Source Uncertainty (SU)4.

(Statewise Optimization SO)

Source Uncertainty (r, B) is a joint distribution generating each pair of r and B 

with specific probability. We write each possible occurrence of (r, B) as (rJ, BJ) and 

4	 Note however that Source Uncertainty is not necessarily “Ultimate Uncertainty”. Although the market price 
variables (e.g., interest rate) are always the ultimate source of uncertainty under perfect competition, variables 
such as W (wage income) are not necessarily so. Wage income itself is the product of the market wage rate 
(i.e., a price variable) and labor supply, and we must consider the latter as optimally chosen by the consumer. 
Hence, H as defined by (3) is not necessarily “Ultimate Uncertainty”, and B=H+N is not necessarily so either. 
In this sense, B as a component of SU is an intermediary concept. Treating W (and H, B) as SU is a simplifying 
assumption of our model which does not treat the leisure-income choice endogenously. We shall refer to this 
point in Section 4.
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the associated probability density as πJ≡π (rJ, BJ)≥05. Each (rJ, BJ) is a “state” of SU, 

Source Uncertainty. 

Corresponding to each (rJ, BJ), the consumer is able to solve the optimization 

problem (1)(2) to obtain (C1
*,J, C2

*,J), the “Statewise Optimum (SO) Solution”. Since 

(rJ, BJ) occurs with density πJ, the corresponding (C1
*,J, C2

*,J) occurs with the same 

density. Repeating this procedure for each and every state of SU, we may construct a 

joint distribution (C1
*, C2

*), whose J-th state (C1
*,J, C2

*,J) occurs with density πJ. Such is 

what we mean by “Statewise Optimization (SO)”.

What is meant by SO? First, it derives the joint distribution (C1
*, C2

*) from that 

of (r, B). Thus derived, (C1
*, C2

*) is a set of statewise optimum consumption plans 

corresponding to each state of SU.

Secondly, SO composes intertemporal consumption plans as stochastic variables. In 

solving the intertemporal consumption problem, there must generally be a presumption 

that the consumption plans are stochastic, for otherwise it is logically impossible 

to carry out stochastic operations such as calculating the expected utility. To derive 

(C1
*, C2

*) as stochastic by applying SO is a logically necessary step. If we do not assume 

this step, we would have to postulate (rather than logically derive) the consumption 

choice space6. 

Third, C1
* and C2

* are generally stochastic as statewise-optimized “Uncertain-

Uncertain” pairs. In contrast, Selden, op.cit., postulates the consumption choice space 

(C1, C2) itself as “Certain-Uncertain Pairs”, and consequently, his preference ordering 

concerns each pair of “Certain C1” and “Uncertain C2”. We do not employ this AP 

framework, postulating instead that the consumption space (C1, C2) itself is “Certain-

Certain Pairs” and that the preference ordering represented by V( ) above concerns 

“Certain C1 and Certain C2” pairs alone. It is the consequence of SO that the pair 

(C1
*, C2

*) becomes “Uncertain-Uncertain Pairs”. Consequently, the preference ordering 

we postulate is simpler than that of Selden’s. 

5	 For convenience, we assume (r, B) to be continuously distributed.
6	 It is in this context that Selden, op.cit. ,which does not employ SO as a behavioral hypothesis under uncertainty, 

postulates that the consumption choice space (C1,C2) itself is “Certain-Uncertain” pairs. We do not employ this 
postulate. See below.
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(Classification of Statewise Optimum Plans)

To simplify notation, we hereafter write  or (C1, C2) (instead of  or (C1
*, C2

*)) to 

mean the optimum consumption plans derived by SO. (C1
J, C2

J)≡  is the J-th statewise 

optimum consumption plan corresponding to the J-th state of SU, (rJ, BJ).  occurs 

with density πJ≥0. Our ultimate target is to choose a deterministic vector  uniquely, 

out of the possible occurrences of the stochastic vector . Let us proceed step-by-step.

For each and every (rJ ,  BJ), the Statewise Optimization (1)(2) to maximize the 

ordinal preference function V( ) is carried out to obtain , the J-th state of . As 

mathematical transform, SO is a one-to-one correspondence:

SO: ((r, B) |π (r, B))↔ ( |π ( ))  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (4),

where π(r, B) is the density of (r, B), i.e., SU. The J-th state of SU occurs with the 

density πJ≡π(rJ , BJ), which is numerically equal to π( ), the density of the J-th 

optimum consumption plan under SO.

In the next step, we make further use of the ordinal preference function V( ) to 

consider the following mathematical transform:

V : →V( )  R+ 

This transform is not one-to-one. We then classify { }, the set of SO consumption 

plans, according to the value of V( ), i.e., we now consider the following set Q(V) 

defined as:

Q(V)≡{  | V( )=V} ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (5).

Notice that Q(V) is an equivalence class whose elements are SO consumption plans 

with identical preference ordering, V. The density π(V) corresponding to Q(V) is:

π(V)= ∫ Q(V)π ( )d ,

and we additionally assume π(V) >0. We therefore obtain, by this step, another 

stochastic variable V,  i.e.,

(V | π(V)), V V( ).

We now proceed to still another step in the next section.

3: Risk Preference and Certainty Equivalence

Up to this stage, we have used the ordinal preference ordering V alone. We now 

introduce risk preference. 
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Consider a function Z( ), which transforms V, an ordinal number, into Z(V), a 

cardinal number. Assume also that >0. Z(V) then is an NM function evaluating the 

risk preference of the consumer. 

Using Z, we now define another stochastic variable Z(V) such that:

(Z(V) | π(V)), V V( )  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (6)

Because Z(V) is cardinal, we may use its expected utility E[Z(V)] to define v*, the 

certainty equivalent ordinal utility level corresponding to E[Z(V)]. v* is defined as 

satisfying:

Z(v*)=E[Z(V)]≡ ∫V( )Z(V)π (V)dV ·  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (7).

Fig.1

V2

v*

C1

C2

V1

　　In terms of Fig.1, v* is the indifference curve 

over which are distributed SO consumption plans 

belonging to the same equivalence class Q(v*). 

Because v* is the certainty equivalence of Z(V), it 

is reasonable to assume that the consumer chooses 

to behave on the indifference curve v* rather than 

stochastically behave on V1, V2, etc.

 The indifference curve v*, however, contains many SO consumption plans. In order 

to reach our ultimate objective to single out a deterministic consumption decision on v*, 

we still have to proceed to the next step, with which we deal in the next section. 

4: Deterministic choice of the consumption plan and a new postulate

To repeat our problem at hand, we wish to f ind a deterministic consumption 

plan ≡ ( 1, 2) on the indifference curve v* of Fig.1. Once we find ( 1, 2), we 

simultaneously f ind ( , ), because of (4), i.e., the one-to-one correspondence 

between SU and the consumption plan derived by SO. 

We already know that ( 1, 2) and ( , ) should satisfy the following:

B=C1 +
C2

r  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (8)

1+r=MRS(C1, C2)  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (9)

v* =V(C1, C2) ·  ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   · (10),

where MRS is the marginal rate of substitution between C1 and C2, i.e., . The 

equations (8) and (9) are necessary for ( 1, 2) to be optimum with respect to a state 
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(including a state with zero density) of (r, B). The equation (10) requires ( 1, 2) to be 

located on the indifference curve v*. Taken together, (8),(9)and (10) are to be regarded 

as simultaneous equations to determine 1, 2,  and . Obviously, however, we 

need another equation, or a transform T, generally, of the form 

g(C1, C2, r, B)=0, or,   T: (C1, C2, r, B)→R ·  ·   ·   ·   ·   ·   ·   ·   ·   ·   · (11),

to determine all the unknowns. 

We need to consider what is appropriate and plausible as (11). In order to do 

so, consider Q(v*), the set of SO consumption plans which are “v*-conditionally” 

distributed over the indifference curve v*. π(v*), the density with which v* occurs, is: 

π(v*)= ∫ Q(v*)π( )d ,

which is positive by the assumption π(V) >0, stated earlier. Then we may consider 

the v*-conditional stochastic vector  distributed on the indifference curve v*, to be 

denoted as ( |v*). The v*-conditional density, π( |v*), is:

π( |v*)≡    (where, Q(v*)).

Consider further the pairs (r, B) which generate ( |v*) as SO. These pairs are 

distributed on the indirect indifference curve ( ) satisfying v* = (r, B). Again 

because of the one-to-one correspondence (4), they are considered as v*-conditional 

joint distribution, to be denoted as (r, B) | v*. The v*-conditional density π(r, B) | v* is 

numerically the same as π( |v*).

How does the consumer behave on the indifference curve v* =V(C1, C2), or, put 

equivalently, on the indirect indifference curve v* = (r, B) ? At this stage, recall that r, 

the market price variable, is always the Ultimate Uncertainty the competitive consumer 

faces (as distinguished from Source Uncertainty), but that B is not necessarily so (see 

footnote 4). Bearing this in mind, we assume that the consumer will regard r that occurs 

as the v*-conditional distribution (r, B) | v* as ultimately relevant to consumption choice 

on the indifference curve v* =V(C1, C2). Substituting “Asymmetry Postulate (AP)”, we 

now introduce our postulate which is composed of two parts (α) and (β) below. It reads:

α) Consumer on the indirect indifference curve v* = (r, B) seeks a value  

included as one of the possible occurrences of (r, B) | v* and chooses a deterministic 
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pair ( 1, 2) that satisf ies 1+ =MRS( 1, 2) on the indifference curve 

v* =V(C1, C2).

β) The consumer determines the value of  by minimizing the expected value 

of the quadratic loss Ev*[r- ]2 with respect to , where the expectation Ev* is 

calculated using the v*-conditional density π(r, B) | v*
7,which is numerically the same 

as π( |v*).

According to β), the loss function is minimized when:

=Ev*[r], ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·   ·  (12),8

and we may accordingly determine  as satisfying v* = ( , B).

The equation (12), including a transform from r to Ev*[r], is indeed a form (11) 

may possibly take. Combining (12) with (8)(9)(10), we may calculate 1, 2,  

and . Further, notice that the pair ( 1, 2) has been singled out as satisfying 

1+ =MRS( 1, 2) on the indifference curve v* =V(C1, C2), treating both C1 and 

C2 symmetrically as stochastic. Our postulate has made it possible to solve the 

intertemporal consumption choice problem under uncertainty without using AP. 

We may now say what our statement in Section 1 exactly means: i.e., “Out of the 

group of optimized certainty equivalent consumption plans with identical preference 

ordering, it is the “mean” of them that is finally chosen as a unique and deterministic 

consumption plan”. 

The mean here refers to the mean of MRS on the v*- conditional indifference curve 

v* =V(C1, C2). According to (9), each consumption pair on this indifference curve has a 

one-to-one correspondence with MRS on that curve. Because MRS is chosen optimally 

equal to each state of 1+ r on v* =V(C1, C2), MRS on v* =V(C1, C2) itself is another v*-

7	 Because the indirect indifference curve v* = (r, B) gives a one-to-one correspondence between r and B, the 
density of r on this indirect indifference curve is equal to π(r, B) | v* itself.

8	 The loss here referred to is related to the difference between the statewise optimum consumption pairs distributed 
over the indifference curve v* =V(C1, C2) and the deterministic choice of ( 1, 2) on the same curve. It is due 
to the assumed quadratic loss function that  is equal to Ev*[r]. We however offer no strong justification for 
using the quadratic loss function except that it is by far the most prevalently assumed in the literature. If instead 
a linear loss function is assumed,  will take on a different value such as the median. What is important from 
the standpoint of economic analysis though is that the specification of the loss function is irrelevant to the utility 
level of the agent, because ( 1, 2) is anyway chosen from the consumption pairs on the indifference curve v* =  
V(C1, C2).
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conditional stochastic variable whose density is numerically equal to π(r, B) | v*. If MRS 

on v* =V(C1, C2) is chosen as satisfying 1 +Ev*[r] = MRS( 1, 2), it simultaneously 

means that the consumer chooses Ev*[MRS] on the same indifference curve to determine 

( 1, 2). The “mean” quoted above is not the mean of (C1, C2 ) on v* =V(C1, C2), but 

the mean of MRS on the same v*- conditional indifference curve. 

To sum up, solving the intertemporal consumption choice problem generally 

requires some new behavioral hypotheses (postulates) not used under certainty. One 

such example is the Asymmetry Postulate (AP) employed by Hall and Selden. As we 

noted at the outset, however, there is no strong reason to stick to AP. We instead replace 

AP with our own, and treat each period consumption plans symmetrically as stochastic. 

It must be added that our approach is readily applicable to more-than-two-period (or, 

more-than-two-goods) model9. 

5: Comparison with Hall and Selden

Let us compare our approach with AP, in particular Hall[1978] and Selden[1978]. 

Hall starts his analysis assuming a cardinal utility function U(C1, C2). It corresponds 

to our Z[V(C1, C2)], although Z and V are undistinguished by Hall. For Hall, who treats 

r as non-stochastic, Source Uncertainty SU is simply a given distribution of B. 

As we have shown, our SO procedure requires only the statewise budget constraint 

be satisfied for maximization. For Hall, however, we may interpret that not only the 

statewise budget constraint but also “C1 is certain” must be satisfied as the second 

restriction for maximization. Indeed, Hall’s optimum condition is obtained if we 

9	 Extension to 3-period model is as follows. Consider the indifference surface v* =V( ), where ≡ (C1, C2, C3) 
is the statewise optimum and v* is the certainty equivalent level of V. Further, let ri denote the interest rate from 
period i to period i+1. Denoting by MRSi,j the marginal rate of substitution between Ci and CJ, ( 1, 2, 3) is to 

be chosen as satisfying Ev*[1+r1]= MRS1,2 and Ev*(1+r1)(1+r2)=MRS1,3 on v* =V( ).

78 成蹊大学経済学部論集　第48巻第1号   （2017年7月）



maximize the expected utility under the two constraints10,11. To be sure, the second 

restriction is a technically possible way to choose C1 deterministically, but Hall’s 

restriction is stronger than ours, because we impose the statewise budget constraint 

alone. It must be recognized, then, that Hall’s optimum, because it implicitly postulates 

C1 asymmetrically as a variable with certainty, is subotimal from the standpoint of our 

approach. 

 Further to be noticed is that Hall’s approach starts from the cardinal utility U(≡ZV), 

without distinguishing V from Z. Although it is true that Hall’s maximization does take 

risk preference into account, it is not clear the extent to which the consumption choice is 

influenced by risk preference. In order to analyze how the risk preference influences the 

consumption choice explicitly, one must introduce risk preference function separately 

and make use of the certainty equivalence, as Selden does. 

To postulate (C1, C2) explicitly and asymmetrically as “Certain-Uncertain Pairs”, as 

Selden does, is another way to start the analysis. Again, this postulate is a possible way 

to choose C1 deterministically. Assuming further that risk preference with respect to C2 

is independent of C1 (“Risk Preference Independence”), Selden makes use of certainty 

equivalence (of C2) to choose C1 deterministically.

As we have remarked at the outset, the assumed asymmetry of C1 and C2 (future 

10	 Let U be additively separable, as Hall does. Let the density of each state of B be π(B); δ be the utility discount 
rate; and Ci (B) (i=1, 2, .., n) be the statewise choice of Ci (i=1, 2, .., n) corresponding to the stochastic B. Given 
the stochastic budget constraint B=C1(B)+∑n

i=2, , Hall’s target is to maximize the expected utility

 	 EU≡ ∫u[C1(B)]π(B)dB+∑n
i=2 ∫ π(B)dB.

 	 According to Hall, the optimum condition is Et[u'(Ct+1)]= u'(Ct). For t=1, then, 
 	 E1[u'(C2)]= u'(C1)・・・・・・・・・・・・・・・・・・・・・(a)

 	 is required for optimum (Hall [1978], p.974, Theorem). 
 	 As we shall discuss in the next footnote, however, the condition (a) is not obtained under the stochastic budget 

constraint alone.
11	 Consider EU and the stochastic budget constraint in the preceding footnote, and suppose EU is maximized under 

the stochastic budget constraint alone. Statewise optimization of our approach requires, for each state of B, 
 	 u'(C2(B))= u'(C1(B))・・・・・・・・・・・・・・・・・・・(b),

 	 be necessary, where C1(B) and C2(B) occur with density π(B). Operating E1 over (b), we obtain 
 	 E1[u'(C2)]= E1[u'(C1)]・・・・・・・・・・・・・・・・・・(c)

 	 as the implication of our statewise optimality. Particularly noteworthy is that the condition (c ) and Hall’s 
optimum condition (a) are generally different (See the preceding footnote and compare RHS). 

 	 However, if our statewise optimization is carried out not only under the stochastic budget constraint but also 
under the second constraint “C1(B) =C1 for any state of B”, then (c ) coincides with (a). As suggested in the 
introduction as well as in the proceeding footnote, it is possible to interpret Hall’s optimum condition (a) as 
obtained with stronger restrictions than ours. See Tanaka-Mutoh[2016].
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consumption, generally) is questionable. Consumption choice under uncertainty is a 

problem to choose the optimum consumption plan when Source Uncertainty, shown 

as a distribution of (r, B), is given. It is of course required that the current period 

consumption demand, ( 1), be ultimately chosen deterministically, but this purpose does 

not logically justify nor rationalize to treat theoretically that C1, as a choice variable for 

optimum behavior, to be postulated as certain. Selden’s approach, however, does employ 

such a postulate, before any optimization behavior takes place.

Rather, it would be more natural, as we do, to think that the consumption pair is 

subject to uncertainty because of the Statewise Optimization behavior under Source 

Uncertainty. For our approach, it is enough if V is assumed as the ordering with respect 

to ”Certain-Certain Pairs”, because our maximization is carried out for each state of 

Source Uncertainty. It is the statewise optimized consumption pairs that are ”Uncertain-

Uncertain” in our approach. 

After obtaining ≡ (C1, C2) by way of Statewsie Optimization, we apply Z over 

V( ) to compute v* as a set of optimum consumption plans reflecting risk preference 

of the consumer. We then introduce our new postulate (α) and (β) to arrive finally at the 

deterministic consumption plan under uncertainty. To postulate a preference ordering 

with respect to “Certain-Uncertain Pairs” is unnecessary. Further, our approach includes 

the optimization under certainty as a special case, in which (r, B) is considered as a 

distribution with all the density concentrated at a single point. 

Final Remarks

The subject of this paper has been to choose, for a period in historical time, a 

deterministic consumption plan ( 1, 2) (more generally, ( 1, 2, 3, …)). Although 

1 is the actual demand in period t, 2, 3, etc are the planned consumption as of 

t, given the information (depending on which the distribution (r, B) is subjectively 

composed) as of t. 

When historical time develops until the next period arrives, new information to 

revise the distribution of Source Uncertainty (r, B) will have accumulated. Generally, it 

is not possible to regard 2 as carried out as planned in the former period. It is desirable, 

then, to analyze the historical development of consumption demand as Stochastic 

Process when both r and B develop as stochastic process. For this purpose, one must 
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specify how Source Uncertainty historically develops as information accumulates. We 

leave this, however, as a future research topic12.

（Tanaka, Former Specially Appointed Professor, Faculty of Economics, Seikei University

Mutoh, Professor Emeritus, Seikei University）
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